Asymptotic Characteristics of the Non-Iterative Estimates of the Linear-by-Linear Association Parameter for Ordinal Log-Linear Models
Abstract
:1. Introduction
2. Non-Iterative Estimation of the Linear-by-Linear Association Parameter
3. Asymptotic Characteristics of and
3.1. Unbiasedness of and
3.2. Variance of and
3.3. Asymptotic Distribution of and
4. Empirical and Computational Study
4.1. Unbiasedness of and
4.2. Asymptotic Variances of and
4.3. Relative Efficiency of and
4.4. Graphical Display for the Asymptotic Distributions of and
4.5. An Empirical Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christensen, R. Log-Linear Models and Logistic Regression, 2nd ed.; Springer: New York, NY, USA, 1997; p. 501. [Google Scholar]
- Imrey, P.B.; Koch, G.G.; Stokes, M.E. Categorical data analysis: Some reflections on the log-linear model and logistic regression. Part 1: Historical and methodological overview. Int. Stat. Rev. 1981, 49, 265–283. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013; p. 752. [Google Scholar]
- Bartlett, M.S. Contingency table interactions. J. R. Stat. Soc. 1935, 2, 248–252. [Google Scholar] [CrossRef]
- Roy, S.N.; Kastenbaum, M.A. On the hypothesis of no “interaction” in a multi-way contingency table. Ann. Math. Stat. 1956, 27, 749–757. [Google Scholar] [CrossRef]
- Darroch, J.N. Interaction in multi factor contingency table. J. R. Stat. Soc. Ser. B 1962, 24, 251–263. [Google Scholar] [CrossRef]
- Plackett, R.L. A note on interactions in contingency table. J. R. Stat. Soc. Ser. B 1962, 24, 162–166. [Google Scholar] [CrossRef]
- Goodman, L.A. Interactions in multi-dimensional contingency tables. Ann. Math. Stat. 1964, 35, 632–646. [Google Scholar] [CrossRef]
- Birch, M.W. Maximum likelihood in three-way contingency table. J. R. Stat. Soc. Ser. B 1963, 25, 220–223. [Google Scholar] [CrossRef]
- Birch, M.W. A new proof of Pearson-Fisher theorem. Ann. Math. Stat. 1964, 35, 817–824. [Google Scholar] [CrossRef]
- Birch, M.W. The detection of partial association I: The 2 × 2 case. J. R. Stat. Soc. Ser. B 1964, 26, 313–324. [Google Scholar] [CrossRef]
- Birch, M.W. The detection of partial association II: The general case. J. R. Stat. Soc. Ser. B 1965, 27, 111–124. [Google Scholar] [CrossRef]
- Mantel, N. Model for complex contingency tables and polychotomous dosage response curves. Biometrics 1966, 22, 83–95. [Google Scholar] [CrossRef]
- David, H.A. First (?) occurrence of common terms in mathematical statistics. Am. Stat. 1995, 49, 121–133. [Google Scholar] [CrossRef]
- Bishop, Y.M.M.; Fienberg, S.E. Incomplete two-dimensional contingency tables. Biometrics 1969, 25, 119–128. [Google Scholar] [CrossRef]
- Agresti, A. Analysis of Ordinal Categorical Data, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010; p. 424. [Google Scholar]
- Haberman, S.J. Log-linear models for frequency tables with ordered classifications. Biometrics 1974, 36, 589–600. [Google Scholar] [CrossRef]
- Simon, G. Alternative analysis for the singly ordered contingency table. J. Am. Stat. Assoc. 1974, 69, 971–976. [Google Scholar] [CrossRef]
- Ishii-Kuntz, M. Ordinal Log-Linear Models; Sage Publications Inc.: Thousand Oaks, CA, USA, 1994; p. 72. [Google Scholar]
- Clogg, C.C.; Shihadeh, E.S. Statistical Models for Ordinal Variables, 1st ed.; Sage: Thousand Oaks, CA, USA, 1994; p. 192. [Google Scholar]
- Simonoff, J.S. Analyzing Categorical Data; Springer: New York, NY, USA, 2003; p. 498. [Google Scholar]
- Powers, D.A.; Xie, Y. Statistical Methods for Categorical Data Analysis, 2nd ed; Elsevier Science Ltd: London, UK, 2008; pp. 296. [Google Scholar]
- Kateri, M. Contingency Table Analysis; Springer: New York, NY, USA, 2014; p. 304. [Google Scholar]
- Ishii-Kuntz, M. Association models in family research. J. Marriage Fam. 1991, 53, 337–348. [Google Scholar] [CrossRef]
- Siddiqi, J. Log-linear and log-bilinear models with ordinal categories. J. Soc. Sci. Humanit. 1995, 35, 53–60. [Google Scholar]
- Agresti, A. Modelling ordered categorical data: Recent advances and future challenges. Stat. Med. 1999, 18, 2191–2207. [Google Scholar] [CrossRef]
- Alin, A. Power-divergence test statistics for testing linear by linear association. Commun. Stat. Simul. Comput. 2009, 38, 1381–1390. [Google Scholar] [CrossRef]
- Alin, A. Penalized power-divergence test statistics for testing linear-by-linear association. J. Stat. Comput. Simul. 2012, 82, 227–239. [Google Scholar] [CrossRef]
- Bagheban, A.A.; Zayeri, F. A generalization of the uniform association model for assessing rater agreement in ordinal scales. J. Appl. Stat. 2010, 37, 1265–1273. [Google Scholar] [CrossRef]
- Beh, E.J.; Farver, T.B. A numerical evaluation of the classification of Portuguese red wine. Curr. Anal. Chem. 2012, 8, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Kateri, M. Φ-divergence in contingency table analysis. Entropy 2018, 20, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kateri, M. Families of generalized quasisymmetry models: A Φ-divergence approach. Symmetry 2021, 13, 2297. [Google Scholar] [CrossRef]
- Pham, T.M.; Kateri, M. Inference for ordinal log-linear models based on algebraic statistics. J. Algebr. Stat. 2019, 10, 30–50. [Google Scholar] [CrossRef]
- Hakimi, A.; Farughi, H.; Amiri, A.; Arkat, J. Phase II monitoring of the ordinal multivariate categorical processes. Adv. Ind. Eng. 2021, 55, 249–267. [Google Scholar] [CrossRef]
- Fujisawa, K.; Tahata, K. Quasi association models for square contingency tables with ordinal categories. Symmetry 2022, 14, 805. [Google Scholar] [CrossRef]
- Haberman, S.J. The Analysis of Frequency Data; University of Chicago Press: Chicago, IL, USA, 1974; p. 419. [Google Scholar]
- Goodman, L.A. Simple models for the analysis of association in cross-classifications having ordered categories. J. Am. Stat. Assoc. 1979, 74, 537–552. [Google Scholar] [CrossRef]
- Goodman, L.A. Three elementary views of log-linear models for the analysis of cross-classifications having ordered categories. Sociol. Methodol. 1981, 12, 193–239. [Google Scholar] [CrossRef]
- Clogg, C.C. Some models for the analysis of association in multiway cross classifications having ordered categories. J. Am. Stat. Assoc. 1982, 77, 803–815. [Google Scholar] [CrossRef]
- Beh, E.J.; Farver, T.B. An evaluation of non-iterative methods for estimating the linear-by-linear parameter for ordinal log-linear models. Aust. N. Z. J. Stat. 2009, 51, 335–352, Erratum in: Aust. N. Z. J. Stat. 2010, 52, 241–242. [Google Scholar] [CrossRef]
- Beh, E.J.; Davy, P.J. A non-iterative alternative to ordinal log-linear models. J. Appl. Math. Decis. Sci. 2004, 7, 67–86. [Google Scholar] [CrossRef]
- Beh, E.J.; Farver, T.B. On estimating the linear-by-linear parameter for ordinal log-linear models: A computational study. ISRN Comput. Math. 2012, 2012, 340415. [Google Scholar] [CrossRef] [Green Version]
- Beh, E.J.; Farver, T.B. A computational study assessing maximum likelihood and non-iterative methods for estimating the linear-by-linear parameter for ordinal log-linear models. ISRN Comput. Math. 2012, 2012, 396831. [Google Scholar] [CrossRef] [Green Version]
- Beh, E.J.; Farver, T.B. The Box-Cox transformation and non-iterative estimation methods for ordinal log-linear models. Aust. N. Z. J. Stat. 2012, 54, 475–484. [Google Scholar] [CrossRef]
- Zafar, S.; Cheema, S.A.; Beh, E.J.; Hudson, I.L. A study of bias for non-iterative estimates of the linear-by-linear association parameter from the ordinal log-linear model. In Advances on Latent Variables—Methods, Models and Applications; Bretari, E., Carpita, M., Eds.; Vita e Pensiero Publishers: Milan, Italy, 2013; p. 6. ISBN 978 88 343 2556. [Google Scholar]
- Von Eye, A.; Mun, E.-Y. Log-Linear Modeling: Concepts, Interpretation and Application; Wiley: Hoboken, NJ, USA, 2013; p. 472. [Google Scholar]
- Espendiller, M. Association in Contingency Tables: An Information Theoretic Approach. Unpublished. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2017. [Google Scholar] [CrossRef]
- Clayton, D.G. Some odds ratio statistics for the analysis of ordered categorical data. Biometrika 1974, 61, 525–531. [Google Scholar] [CrossRef]
- Beh, E.J. Simple correspondence analysis of ordinal cross-classifications using orthogonal polynomials. Biom. J. 1997, 29, 589–613. [Google Scholar] [CrossRef]
- Beh, E.J.; Lombardo, R. Correspondence Analysis: Theory, Methods and New Strategies, 1st ed.; Wiley: Chichester, UK, 2014; p. 592. [Google Scholar]
- Beh, E.J.; Lombardo, R. An Introduction to Correspondence Analysis, 1st ed.; Wiley: Chichester, UK, 2021; p. 240. [Google Scholar]
- Beh, E.J.; Lombardo, R. Features of the polynomial biplot for ordered contingency tables. J. Comput. Graph. Stat. 2022, 31, 403–412. [Google Scholar] [CrossRef]
- Lombardo, R.; Beh, E.J.; Kroonenberg, P.M. Modelling trends in ordered correspondence analysis using orthogonal polynomials. Psychometrika 2016, 81, 325–349. [Google Scholar] [CrossRef]
- Zafar, S.; Cheema, S.A.; Beh, E.J.; Hudson, I.L.; Hudson, S.A.; Abell, A.D. Linking ordinal log-linear models with correspondence analysis: An application to estimating drug-likeness in the drug discovery process. In MODSIM2013, Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013; Piantadosi, J., Anderssen, R.S., Boland, J., Eds.; Modelling and Simulation Society of Australia and New Zealand: Canberra, Australia; pp. 1945–1951. ISBN 978-0-9872143-3-1. [CrossRef]
- Zafar, S.; Beh, E.J.; Hudson, I.L. Non-iterative estimation methods for the association parameters of the ordinal log-linear models for three-way tables. In Proceedings of the Australian Statistics Conference 2016 (ASC2016), Canberra, Australia, 5–8 December 2016. [Google Scholar]
- Zafar, S.; Hudson, I.L.; Beh, E.J.; Abell, A. A non-iterative approach to ordinal log-linear models: Investigations of log D in drug discovery. In Proceedings of the 31st International Workshop on Statistical Modelling, Rennes, France, 4–8 July 2016. [Google Scholar]
- Zafar, S.; Hudson, I.L.; Beh, E.J.; Joyce, P.R. Modelling risk profiles of depression symptoms using Cloninger’s temperament and character traits: A non-iterative approach to assess linear-by-linear association within ordered contingency tables. In MODSIM2015, Proceedings of the 21st International Congress on Modelling and Simulation (MODSIM2015), Melbourne, Australia, 12-15 December 2015; Weber, T., McPhee, M.J., Anderssen, R.S., Eds.; Modelling and Simulation Society of Australia and New Zealand: Canberra, Australia, 2015; pp. 1668–1674. ISBN 978-0-9872143-5-5. [Google Scholar]
- Evers, N.; Namboodri, N.K. Monte-Carlo assessment of the stability of log-linear estimates in small sample. In Proceedings of American Statistical Association, Social Statistics Section, Washington, DC, USA; American Statistical Association: Alexandria, VA, USA, 1977. [Google Scholar]
- Clogg, C.C.; Eliason, S.R. Some common problems in log-linear analysis. Sociol. Methods Res. 1987, 15, 4–44. [Google Scholar] [CrossRef]
- Fienberg, S.E. The Analysis of Cross Classified Categorical Data, 2nd ed.; Springer: New York, NY, USA, 2007; p. 198. [Google Scholar]
- Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Cengage Learning: Duxbury, MA, USA, 2002; p. 686. [Google Scholar]
- Akoto, I.; Mexia, J.T.; Marques, F.J. Asymptotic Results for Multinomial Models. Symmetry 2021, 13, 2173. [Google Scholar] [CrossRef]
Size of Contingency Table | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ | n | 2 × 2 | 3 × 3 | 4 × 4 | 5 × 5 | 2 × 3 | 2 × 4 | 2 × 5 | 3 × 4 | 3 × 5 | 4 × 5 | ||||||||||
1.5 | 0.1% | −0.0017 | −0.0018 | 0.0026 | 0.0043 | 0.0033 | 0.0013 | 0.0040 | 0.0054 | −0.0091 | −0.0134 | 0.0025 | 0.0022 | 0.0044 | 0.0019 | 0.0073 | 0.0080 | 0.0024 | 0.0023 | −0.0024 | −0.0070 |
1% | −0.0014 | −0.0011 | −0.0008 | −0.0001 | 0.0016 | 0.0011 | −0.0058 | −0.0069 | 0.0058 | 0.0061 | −0.0010 | −0.0010 | 0.0076 | 0.0083 | −0.0040 | −0.0049 | −0.0075 | −0.0078 | 0.0038 | 0.0041 | |
5% | 0.0021 | 0.0024 | −0.0016 | −0.0014 | −0.0042 | −0.0034 | −0.0039 | −0.0041 | 0.0015 | 0.0011 | 0.0010 | 0.0011 | −0.0029 | −0.0024 | −0.0042 | −0.0042 | −0.0065 | −0.0063 | −0.0032 | −0.0033 | |
15% | −0.0002 | −0.0002 | 0.0095 | 0.0093 | 0.0025 | 0.0021 | 0.0044 | 0.0044 | 0.0096 | 0.0099 | −0.0028 | −0.0027 | 0.0023 | 0.0024 | 0.0043 | 0.0047 | 0.0068 | 0.0071 | 0.0039 | 0.0044 | |
30% | −0.0015 | −0.0015 | −0.0066 | −0.0066 | −0.0030 | −0.0030 | −0.0027 | −0.0027 | 0.0013 | 0.0013 | −0.0007 | −0.0007 | −0.0042 | −0.0042 | 0.0043 | 0.0043 | −0.0009 | −0.0009 | −0.0031 | −0.0031 | |
50% | 0.0016 | 0.0016 | −0.0046 | −0.0046 | 0.0034 | 0.0034 | 0.0043 | 0.0043 | 0.0047 | 0.0047 | −0.0016 | −0.0016 | −0.0058 | −0.0058 | 0.0028 | 0.0028 | 0.0011 | 0.0011 | −0.0001 | −0.0001 | |
5 | 0.1% | 0.0002 | 0.0004 | −0.0008 | 0.0021 | 0.0001 | −0.0002 | 0.0007 | 0.0028 | −0.0041 | −0.0028 | 0.0022 | −0.0011 | 0.0029 | 0.0028 | −0.0029 | −0.0032 | −0.0018 | −0.0017 | 0.0001 | 0.0018 |
1% | −0.0007 | −0.0004 | −0.0007 | −0.0012 | 0.0025 | 0.0026 | 0.0017 | 0.0015 | 0.0066 | 0.0074 | −0.0018 | −0.0019 | 0.0026 | 0.0024 | 0.0006 | 0.0007 | 0.0011 | 0.0014 | −0.0010 | −0.0008 | |
5% | 0.0002 | 0.0003 | −0.0029 | −0.0029 | 0.0007 | 0.0009 | 0.0000 | 0.0000 | −0.0014 | −0.0018 | −0.0004 | −0.0007 | −0.0012 | −0.0013 | 0.0022 | 0.0024 | −0.0013 | −0.0011 | 0.0002 | 0.0002 | |
15% | −0.0002 | −0.0002 | 0.0020 | 0.0020 | −0.0015 | −0.0016 | −0.0013 | −0.0012 | 0.0019 | 0.0017 | 0.0030 | 0.0032 | −0.0015 | −0.0013 | −0.0007 | −0.0007 | −0.0028 | −0.0029 | 0.0014 | 0.0012 | |
30% | −0.0002 | −0.0002 | −0.0027 | −0.0027 | −0.0007 | −0.0007 | 0.0001 | 0.0001 | 0.0028 | 0.0028 | −0.0015 | −0.0015 | 0.0005 | 0.0005 | −0.0017 | −0.0017 | −0.0003 | −0.0003 | −0.0034 | −0.0034 | |
50% | −0.0026 | −0.0026 | −0.0005 | −0.0007 | 0.0023 | 0.0023 | 0.0027 | 0.0027 | 0.0016 | 0.0016 | −0.0003 | −0.0003 | −0.0009 | −0.0009 | 0.0013 | 0.0013 | 0.0018 | 0.0018 | 0.0021 | 0.0021 | |
20 | 0.1% | −0.0004 | −0.0013 | 0.0011 | −0.0005 | −0.0002 | −0.0001 | 0.0012 | 0.0017 | −0.0002 | −0.0009 | −0.0010 | −0.0001 | −0.0003 | −0.0003 | −0.0002 | 0.0004 | 0.0010 | 0.0005 | −0.0001 | −0.0004 |
1% | 0.0007 | 0.0004 | −0.0001 | −0.0003 | −0.0006 | −0.0007 | 0.0003 | 0.0003 | 0.0006 | 0.0004 | 0.0006 | 0.0006 | −0.0002 | 0.0002 | −0.0001 | −0.0001 | 0.0003 | 0.0003 | 0.0004 | 0.0004 | |
5% | 0.0019 | 0.0021 | −0.0008 | −0.0007 | 0.0010 | 0.0010 | 0.0005 | 0.0004 | −0.0009 | −0.0011 | −0.0013 | −0.0015 | 0.0006 | 0.0008 | 0.0004 | 0.0004 | −0.0003 | −0.0003 | −0.0008 | −0.0008 | |
15% | 0.0018 | 0.0018 | 0.0003 | 0.0003 | −0.0009 | −0.0010 | 0.0003 | 0.0003 | 0.0018 | 0.0018 | 0.0005 | 0.0006 | −0.0010 | −0.0010 | 0.0007 | 0.0006 | 0.0011 | 0.0011 | −0.0007 | −0.0007 | |
30% | −0.0014 | −0.0014 | 0.0005 | 0.0005 | 0.0003 | 0.0003 | −0.0001 | −0.0001 | −0.0004 | −0.0004 | 0.0006 | 0.0006 | 0.0010 | 0.0010 | 0.0014 | 0.0014 | 0.0004 | 0.0004 | −0.0004 | −0.0004 | |
50% | −0.0013 | −0.0013 | −0.0024 | −0.0024 | −0.0004 | −0.0004 | −0.0002 | −0.0002 | 0.0004 | 0.0004 | 0.0013 | 0.0013 | −0.0006 | −0.0006 | 0.0017 | 0.0017 | −0.0013 | −0.0013 | 0.0007 | 0.0007 | |
50 | 0.1% | 0.0003 | 0.0018 | −0.0001 | −0.0001 | 0.0004 | 0.0010 | −0.0004 | −0.0006 | −0.0007 | −0.0002 | 0.0004 | 0.0019 | 0.0004 | 0.0002 | −0.0004 | −0.0004 | 0.0003 | 0.0004 | −0.0006 | −0.0005 |
1% | −0.0007 | −0.0003 | 0.0004 | 0.0004 | 0.0001 | 0.0001 | −0.0002 | −0.0001 | −0.0007 | −0.0006 | −0.0001 | −0.0003 | −0.0002 | −0.0002 | −0.0001 | −0.0002 | 0.0005 | 0.0005 | 0.0002 | 0.0002 | |
5% | 0.0005 | 0.0004 | 0.0013 | 0.0012 | −0.0005 | −0.0005 | −0.0001 | −0.0001 | 0.0003 | 0.0004 | −0.0005 | −0.0005 | 0.0012 | 0.0012 | 0.0006 | 0.0006 | 0.0002 | 0.0002 | −0.0004 | −0.0004 | |
15% | 0.0004 | 0.0004 | −0.0006 | −0.0006 | 0.0001 | 0.0001 | −0.0003 | −0.0003 | −0.0008 | −0.0008 | 0.0008 | 0.0008 | 0.0004 | 0.0004 | −0.0003 | −0.0002 | −0.0002 | −0.0002 | −0.0005 | −0.0005 | |
30% | 0.0009 | 0.0009 | 0.0003 | 0.0003 | −0.0003 | −0.0003 | 0.0004 | 0.0004 | −0.0006 | −0.0006 | 0.0002 | 0.0002 | 0.0006 | 0.0006 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | |
50% | 0.0016 | 0.0016 | 0.0005 | 0.0005 | −0.0003 | −0.0003 | −0.0004 | −0.0004 | −0.0003 | −0.0003 | 0.0004 | 0.0004 | 0.0001 | 0.0001 | 0.0003 | 0.0003 | 0.0001 | 0.0001 | −0.0002 | −0.0002 |
Size of Contingency Table | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ | n | 2 × 2 | 3 × 3 | 4 × 4 | 5 × 5 | 2 × 3 | 2 × 4 | 2 × 5 | 3 × 4 | 3 × 5 | 4 × 5 | ||||||||||
1.5 | 0.1% | −0.0010 | −0.0020 | 0.0016 | 0.0025 | 0.0019 | 0.0023 | 0.0018 | 0.0015 | −0.0048 | −0.0012 | 0.0016 | 0.0017 | 0.0036 | 0.0002 | 0.0043 | 0.0040 | 0.0014 | 0.0045 | −0.0021 | −0.0002 |
1% | −0.0010 | −0.0004 | 0.0000 | −0.0001 | 0.0009 | 0.0020 | −0.0035 | −0.0031 | 0.0018 | 0.0031 | −0.0006 | −0.0007 | 0.0040 | 0.0042 | −0.0008 | −0.0009 | −0.0045 | −0.0051 | 0.0025 | 0.0035 | |
5% | 0.0010 | 0.0010 | −0.0012 | −0.0011 | −0.0024 | −0.0024 | −0.0001 | −0.0001 | 0.0008 | 0.0011 | 0.0003 | 0.0001 | −0.0012 | −0.0011 | −0.0031 | −0.0031 | −0.0031 | −0.0033 | −0.0030 | −0.0031 | |
15% | −0.0003 | −0.0003 | 0.0042 | 0.0043 | 0.0024 | 0.0023 | 0.0036 | 0.0036 | 0.0057 | 0.0053 | −0.0017 | −0.0017 | 0.0019 | 0.0023 | 0.0007 | 0.0007 | 0.0043 | 0.0043 | 0.0014 | 0.0013 | |
30% | −0.0011 | −0.0012 | −0.0038 | −0.0038 | −0.0023 | −0.0023 | −0.0020 | −0.0020 | 0.0009 | 0.0009 | −0.0001 | −0.0001 | −0.0025 | −0.0025 | 0.0033 | 0.0033 | −0.0009 | −0.0009 | −0.0012 | −0.0012 | |
50% | 0.0007 | 0.0007 | −0.0037 | −0.0037 | 0.0024 | 0.0024 | 0.0021 | 0.0021 | 0.0032 | 0.0032 | −0.0016 | −0.0016 | −0.0030 | −0.0030 | 0.0011 | 0.0011 | 0.0010 | 0.0010 | 0.0001 | −0.0001 | |
5 | 0.1% | 0.0001 | 0.0011 | −0.0014 | −0.0002 | 0.0002 | 0.0021 | 0.0005 | 0.0001 | −0.0035 | −0.0025 | 0.0018 | 0.0011 | 0.0029 | 0.0016 | −0.0020 | −0.0006 | −0.0011 | −0.0009 | 0.0003 | 0.0012 |
1% | −0.0007 | −0.0007 | −0.0007 | −0.0005 | 0.0022 | 0.0020 | 0.0010 | 0.0017 | 0.0045 | 0.0047 | −0.0015 | −0.0025 | 0.0020 | 0.0022 | 0.0009 | 0.0012 | 0.0014 | 0.0015 | −0.0008 | −0.0010 | |
5% | 0.0001 | 0.0002 | −0.0022 | −0.0022 | 0.0006 | 0.0009 | −0.0001 | −0.0002 | −0.0010 | −0.0012 | −0.0006 | −0.0006 | −0.0005 | −0.0007 | 0.0020 | 0.0020 | −0.0009 | −0.0009 | 0.0002 | 0.0001 | |
15% | −0.0001 | −0.0001 | 0.0012 | 0.0012 | −0.0010 | −0.0010 | −0.0005 | −0.0005 | 0.0015 | 0.0017 | 0.0021 | 0.0021 | −0.0011 | −0.0013 | 0.0000 | 0.0000 | −0.0027 | −0.0028 | 0.0013 | 0.0013 | |
30% | −0.0002 | −0.0002 | −0.0027 | −0.0027 | −0.0009 | −0.0009 | 0.0003 | 0.0003 | 0.0024 | 0.0024 | −0.0011 | −0.0011 | −0.0003 | −0.0003 | −0.0008 | −0.0008 | −0.0001 | −0.0001 | −0.0023 | −0.0023 | |
50% | −0.0018 | −0.0018 | −0.0014 | −0.0014 | 0.0016 | 0.0016 | 0.0027 | 0.0027 | 0.0022 | 0.0022 | −0.0001 | −0.0001 | −0.0006 | −0.0006 | 0.0007 | 0.0007 | 0.0019 | 0.0019 | 0.0013 | 0.0013 | |
20 | 0.1% | −0.0004 | −0.0018 | 0.0011 | 0.0009 | −0.0002 | −0.0004 | 0.0011 | 0.0008 | −0.0002 | −0.0012 | −0.0010 | 0.0000 | −0.0003 | −0.0003 | −0.0002 | 0.0000 | 0.0009 | 0.0012 | −0.0001 | −0.0001 |
1% | 0.0007 | 0.0012 | −0.0002 | −0.0002 | −0.0007 | −0.0006 | 0.0004 | 0.0004 | 0.0005 | 0.0009 | 0.0005 | 0.0002 | −0.0001 | −0.0001 | −0.0001 | 0.0003 | 0.0002 | 0.0003 | 0.0004 | 0.0004 | |
5% | 0.0019 | 0.0020 | −0.0007 | −0.0006 | 0.0010 | 0.0010 | 0.0004 | 0.0004 | −0.0009 | −0.0009 | −0.0012 | −0.0012 | 0.0006 | 0.0004 | 0.0005 | 0.0004 | −0.0003 | −0.0003 | −0.0008 | −0.0007 | |
15% | 0.0018 | 0.0018 | 0.0003 | 0.0003 | −0.0009 | −0.0009 | 0.0003 | 0.0003 | 0.0017 | 0.0017 | 0.0005 | 0.0005 | −0.0010 | −0.0009 | 0.0006 | 0.0006 | 0.0012 | 0.0012 | −0.0007 | −0.0007 | |
30% | −0.0014 | −0.0014 | 0.0006 | 0.0006 | 0.0002 | 0.0002 | −0.0001 | −0.0001 | −0.0004 | −0.0004 | 0.0006 | 0.0006 | 0.0009 | 0.0009 | 0.0014 | 0.0014 | 0.0003 | 0.0003 | −0.0004 | −0.0004 | |
50% | −0.0014 | −0.0014 | −0.0023 | −0.0023 | −0.0004 | −0.0004 | −0.0002 | −0.0002 | 0.0004 | 0.0004 | 0.0013 | 0.0013 | −0.0005 | −0.0005 | 0.0017 | 0.0017 | −0.0012 | −0.0012 | 0.0007 | 0.0007 | |
50 | 0.1% | 0.0003 | −0.0012 | −0.0001 | −0.0003 | 0.0004 | 0.0006 | −0.0004 | −0.0003 | −0.0007 | −0.0003 | 0.0004 | 0.0004 | 0.0004 | −0.0003 | −0.0004 | −0.0004 | 0.0003 | 0.0008 | −0.0006 | 0.0001 |
1% | −0.0007 | −0.0008 | 0.0004 | 0.0003 | 0.0001 | 0.0001 | −0.0002 | −0.0001 | −0.0007 | −0.0007 | −0.0001 | −0.0002 | −0.0002 | 0.0000 | −0.0001 | −0.0002 | 0.0004 | 0.0005 | 0.0002 | 0.0002 | |
5% | 0.0004 | 0.0004 | 0.0012 | 0.0012 | −0.0005 | −0.0005 | −0.0001 | −0.0001 | 0.0003 | 0.0003 | −0.0005 | −0.0005 | 0.0012 | 0.0013 | 0.0006 | 0.0007 | 0.0002 | 0.0001 | −0.0004 | −0.0004 | |
15% | 0.0004 | 0.0004 | −0.0006 | −0.0006 | 0.0001 | 0.0001 | −0.0003 | −0.0003 | −0.0008 | −0.0008 | 0.0008 | 0.0008 | 0.0004 | 0.0004 | −0.0002 | −0.0002 | −0.0002 | −0.0002 | −0.0004 | −0.0004 | |
30% | 0.0009 | 0.0009 | 0.0003 | 0.0003 | −0.0003 | −0.0003 | 0.0004 | 0.0004 | −0.0006 | −0.0006 | 0.0002 | 0.0002 | 0.0006 | 0.0006 | −0.0001 | −0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | |
50% | 0.0016 | 0.0016 | 0.0005 | 0.0005 | −0.0002 | −0.0002 | −0.0004 | −0.0003 | −0.0003 | −0.0003 | 0.0004 | 0.0004 | 0.0001 | 0.0001 | 0.0003 | 0.0003 | 0.0001 | 0.0001 | −0.0002 | −0.0002 |
Size of Contingency Table | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ | n | 2 × 2 | 3 × 3 | 4 × 4 | 5 × 5 | 2 × 3 | 2 × 4 | 2 × 5 | 3 × 4 | 3 × 5 | 4 × 5 | ||||||||||
1.5 | 0.1% | 1.20 × 109 | 1.31 × 10−1 | 9.82 × 10−3 | 1.35 × 10−2 | 2.15 × 10−3 | 2.50 × 10−3 | 7.92 × 10−4 | 8.76 × 10−4 | 1.23 × 103 | 3.34 × 10−2 | 2.84 × 10−1 | 1.47 × 10−2 | 1.05 × 10−2 | 7.51 × 10−3 | 4.11 × 10−3 | 5.00 × 10−3 | 2.45 × 10−3 | 2.87 × 10−3 | 1.28 × 10−3 | 1.45 × 10−3 |
1% | 1.21 × 109 | 1.30 × 10−1 | 1.12 × 10−2 | 1.16 × 10−2 | 2.09 × 10−3 | 2.41 × 10−3 | 7.96 × 10−4 | 8.79 × 10−4 | 1.24 × 103 | 3.55 × 10−2 | 1.64 × 10−1 | 1.43 × 10−2 | 6.39 × 10−3 | 7.51 × 10−3 | 4.10 × 10−3 | 5.10 × 10−3 | 2.44 × 10−3 | 2.83 × 10−3 | 1.29 × 10−3 | 1.45 × 10−3 | |
5% | 1.23 × 109 | 1.32 × 10−1 | 8.63 × 10−3 | 1.23 × 10−2 | 2.11 × 10−3 | 2.44 × 10−3 | 7.92 × 10−4 | 8.71 × 10−4 | 1.34 × 103 | 3.27 × 10−2 | 2.07 × 100 | 1.45 × 10−2 | 6.34 × 10−3 | 7.44 × 10−3 | 4.27 × 10−3 | 5.16 × 10−3 | 2.43 × 10−3 | 2.83 × 10−3 | 1.29 × 10−3 | 1.46 × 10−3 | |
15% | 9.77 × 108 | 1.37 × 10−1 | 8.62 × 10−3 | 1.49 × 10−2 | 2.09 × 10−3 | 2.43 × 10−3 | 7.97 × 10−4 | 8.80 × 10−4 | 1.25 × 100 | 3.50 × 10−2 | 1.37 × 10−1 | 1.45 × 10−2 | 6.36 × 10−3 | 7.67 × 10−3 | 4.14 × 10−3 | 4.99 × 10−3 | 2.43 × 10−3 | 2.85 × 10−3 | 1.29 × 10−3 | 1.45 × 10−3 | |
30% | 5.50 × 1010 | 1.21 × 10−1 | 8.56 × 10−3 | 1.11 × 10−2 | 2.10 × 10−3 | 2.45 × 10−3 | 7.97 × 10−4 | 8.77 × 10−4 | 3.93 × 101 | 3.23 × 10−2 | 2.27 × 10−2 | 1.45 × 10−2 | 6.28 × 10−3 | 7.61 × 10−3 | 4.10 × 10−3 | 5.09 × 10−3 | 2.44 × 10−3 | 2.82 × 10−3 | 1.29 × 10−3 | 1.46 × 10−3 | |
50% | 2.74 × 1010 | 1.31 × 10−1 | 8.47 × 10−3 | 2.29 × 10−2 | 2.11 × 10−3 | 2.47 × 10−3 | 7.94 × 10−4 | 8.76 × 10−4 | 1.06 × 102 | 3.43 × 10−2 | 1.54 × 10−1 | 1.46 × 10−2 | 6.39 × 10−3 | 7.53 × 10−3 | 4.08 × 10−3 | 4.96 × 10−3 | 2.44 × 10−3 | 2.86 × 10−3 | 1.29 × 10−3 | 1.46 × 10−3 | |
5 | 0.1% | 3.16 × 10−3 | 3.38 × 10−3 | 5.44 × 10−4 | 5.57 × 10−4 | 1.66 × 10−4 | 1.68 × 10−4 | 6.62 × 10−5 | 6.68 × 10−5 | 1.30 × 10−3 | 1.34 × 10−3 | 6.94 × 10−4 | 7.08 × 10−4 | 4.35 × 10−4 | 4.40 × 10−4 | 2.97 × 10−4 | 3.02 × 10−4 | 1.89 × 10−4 | 1.91 × 10−4 | 1.05 × 10−4 | 1.06 × 10−4 |
1% | 3.17 × 10−3 | 3.38 × 10−3 | 5.44 × 10−4 | 5.56 × 10−4 | 1.65 × 10−4 | 1.67 × 10−4 | 6.63 × 10−5 | 6.69 × 10−5 | 1.29 × 10−3 | 1.34 × 10−3 | 6.94 × 10−4 | 7.06 × 10−4 | 4.34 × 10−4 | 4.40 × 10−4 | 3.00 × 10−4 | 3.05 × 10−4 | 1.88 × 10−4 | 1.90 × 10−4 | 1.04 × 10−4 | 1.05 × 10−4 | |
5% | 3.17 × 10−3 | 3.38 × 10−3 | 5.46 × 10−4 | 5.59 × 10−4 | 1.65 × 10−4 | 1.68 × 10−4 | 6.64 × 10−5 | 6.70 × 10−5 | 1.28 × 10−3 | 1.32 × 10−3 | 6.95 × 10−4 | 7.06 × 10−4 | 4.33 × 10−4 | 4.39 × 10−4 | 2.98 × 10−4 | 3.03 × 10−4 | 1.89 × 10−4 | 1.91 × 10−4 | 1.04 × 10−4 | 1.05 × 10−4 | |
15% | 3.17 × 10−3 | 3.38 × 10−3 | 5.50 × 10−4 | 5.64 × 10−4 | 1.65 × 10−4 | 1.67 × 10−4 | 6.62 × 10−5 | 6.67 × 10−5 | 1.28 × 10−3 | 1.32 × 10−3 | 6.97 × 10−4 | 7.08 × 10−4 | 4.36 × 10−4 | 4.41 × 10−4 | 3.01 × 10−4 | 3.06 × 10−4 | 1.89 × 10−4 | 1.91 × 10−4 | 1.04 × 10−4 | 1.05 × 10−4 | |
30% | 2.09 × 102 | 3.39 × 10−3 | 5.45 × 10−4 | 5.57 × 10−4 | 1.65 × 10−4 | 1.67 × 10−4 | 6.64 × 10−5 | 6.69 × 10−5 | 1.30 × 10−3 | 1.33 × 10−3 | 6.95 × 10−4 | 7.09 × 10−4 | 4.36 × 10−4 | 4.42 × 10−4 | 2.99 × 10−4 | 3.04 × 10−4 | 1.89 × 10−4 | 1.91 × 10−4 | 1.05 × 10−4 | 1.06 × 10−4 | |
50% | 3.17 × 10−3 | 3.39 × 10−3 | 5.47 × 10−4 | 5.60 × 10−4 | 1.65 × 10−4 | 1.67 × 10−4 | 6.64 × 10−5 | 6.69 × 10−5 | 1.29 × 10−3 | 1.32 × 10−3 | 6.97 × 10−4 | 7.10 × 10−4 | 4.37 × 10−4 | 4.43 × 10−4 | 3.00 × 10−4 | 3.05 × 10−4 | 1.90 × 10−4 | 1.92 × 10−4 | 1.05 × 10−4 | 1.06 × 10−4 | |
20 | 0.1% | 1.64 × 10−4 | 1.34 × 10−3 | 3.16 × 10−5 | 3.16 × 10−5 | 9.91 × 10−6 | 9.91 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 7.18 × 10−5 | 7.18 × 10−5 | 4.01 × 10−5 | 4.01 × 10−5 | 2.55 × 10−5 | 2.55 × 10−5 | 1.77 × 10−5 | 1.77 × 10−5 | 1.13 × 10−5 | 1.13 × 10−5 | 6.32 × 10−6 | 6.33 × 10−6 |
1% | 1.64 × 10−4 | 1.64 × 10−4 | 3.16 × 10−5 | 3.16 × 10−5 | 9.89 × 10−6 | 9.90 × 10−6 | 4.04 × 10−6 | 4.04 × 10−6 | 7.16 × 10−5 | 7.17 × 10−5 | 4.00 × 10−5 | 4.01 × 10−5 | 2.55 × 10−5 | 2.55 × 10−5 | 1.76 × 10−5 | 1.76 × 10−5 | 1.12 × 10−5 | 1.13 × 10−5 | 6.31 × 10−6 | 6.31 × 10−6 | |
5% | 1.64 × 10−4 | 1.64 × 10−4 | 3.16 × 10−5 | 3.16 × 10−5 | 9.88 × 10−6 | 9.89 × 10−6 | 4.04 × 10−6 | 4.04 × 10−6 | 7.18 × 10−5 | 7.18 × 10−5 | 3.99 × 10−5 | 3.99 × 10−5 | 2.56 × 10−5 | 2.56 × 10−5 | 1.77 × 10−5 | 1.77 × 10−5 | 1.13 × 10−5 | 1.13 × 10−5 | 6.32 × 10−6 | 6.32 × 10−6 | |
15% | 1.64 × 10−4 | 1.64 × 10−4 | 3.16 × 10−5 | 3.16 × 10−5 | 9.90 × 10−6 | 9.90 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 7.19 × 10−5 | 7.19 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 2.55 × 10−5 | 2.55 × 10−5 | 1.76 × 10−5 | 1.77 × 10−5 | 1.13 × 10−5 | 1.13 × 10−5 | 6.32 × 10−6 | 6.32 × 10−6 | |
30% | 1.64 × 10−4 | 1.64 × 10−4 | 3.17 × 10−5 | 3.17 × 10−5 | 9.89 × 10−6 | 9.89 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 7.18 × 10−5 | 7.18 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 2.55 × 10−5 | 2.55 × 10−5 | 1.77 × 10−5 | 1.77 × 10−5 | 1.13 × 10−5 | 1.13 × 10−5 | 6.32 × 10−6 | 6.32 × 10−6 | |
50% | 1.64 × 10−4 | 1.64 × 10−4 | 3.15 × 10−5 | 3.15 × 10−5 | 9.89 × 10−6 | 9.89 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 7.18 × 10−5 | 7.18 × 10−5 | 4.01 × 10−5 | 4.01 × 10−5 | 2.55 × 10−5 | 2.55 × 10−5 | 1.77 × 10−5 | 1.77 × 10−5 | 1.13 × 10−5 | 1.13 × 10−5 | 6.32 × 10−6 | 6.32 × 10−6 | |
50 | 0.1% | 2.55 × 10−5 | 2.55 × 10−5 | 4.98 × 10−6 | 4.98 × 10−6 | 1.57 × 10−6 | 1.57 × 10−6 | 6.43 × 10−7 | 6.43 × 10−7 | 1.12 × 10−5 | 1.12 × 10−5 | 6.31 × 10−6 | 6.31 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 2.79 × 10−6 | 2.79 × 10−6 | 1.79 × 10−6 | 1.79 × 10−6 | 1.00 × 10−6 | 1.00 × 10−6 |
1% | 2.54 × 10−5 | 2.54 × 10−5 | 4.99 × 10−6 | 4.99 × 10−6 | 1.57 × 10−6 | 1.57 × 10−6 | 6.42 × 10−7 | 6.42 × 10−7 | 1.13 × 10−5 | 1.13 × 10−5 | 6.31 × 10−6 | 6.31 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 2.80 × 10−6 | 2.80 × 10−6 | 1.79 × 10−6 | 1.79 × 10−6 | 1.00 × 10−6 | 1.00 × 10−6 | |
5% | 2.54 × 10−5 | 2.54 × 10−5 | 4.99 × 10−6 | 4.99 × 10−6 | 1.57 × 10−6 | 1.57 × 10−6 | 6.42 × 10−7 | 6.42 × 10−7 | 1.12 × 10−5 | 1.12 × 10−5 | 6.31 × 10−6 | 6.31 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 2.80 × 10−6 | 2.80 × 10−6 | 1.79 × 10−6 | 1.79 × 10−6 | 1.01 × 10−6 | 1.01 × 10−6 | |
15% | 2.55 × 10−5 | 2.55 × 10−5 | 4.98 × 10−6 | 4.98 × 10−6 | 1.57 × 10−6 | 1.57 × 10−6 | 6.42 × 10−7 | 6.42 × 10−7 | 1.13 × 10−5 | 1.13 × 10−5 | 6.32 × 10−6 | 6.32 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 2.80 × 10−6 | 2.80 × 10−6 | 1.79 × 10−6 | 1.79 × 10−6 | 1.00 × 10−6 | 1.00 × 10−6 | |
30% | 2.55 × 10−5 | 2.55 × 10−5 | 4.98 × 10−6 | 4.98 × 10−6 | 1.57 × 10−6 | 1.57 × 10−6 | 6.43 × 10−7 | 6.43 × 10−7 | 1.13 × 10−5 | 1.13 × 10−5 | 6.32 × 10−6 | 6.32 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 2.80 × 10−6 | 2.80 × 10−6 | 1.79 × 10−6 | 1.79 × 10−6 | 1.00 × 10−6 | 1.00 × 10−6 | |
50% | 2.54 × 10−5 | 2.54 × 10−5 | 4.99 × 10−6 | 4.99 × 10−6 | 1.57 × 10−6 | 1.57 × 10−6 | 6.42 × 10−7 | 6.42 × 10−7 | 1.13 × 10−5 | 1.13 × 10−5 | 6.29 × 10−6 | 6.29 × 10−6 | 4.03 × 10−6 | 4.03 × 10−6 | 2.80 × 10−6 | 2.80 × 10−6 | 1.79 × 10−6 | 1.79 × 10−6 | 1.00 × 10−6 | 1.00 × 10−6 |
Size of Contingency Table | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
λ | n | 2 × 2 | 3 × 3 | 4 × 4 | 5 × 5 | 2 × 3 | 2 × 4 | 2 × 5 | 3 × 4 | 3 × 5 | 4 × 5 |
1.5 | 0.1% | 9,189,606,121 | 0.72784956 | 0.85885459 | 0.9045322 | 36992.41 | 19.31567 | 1.401092 | 0.821198 | 0.854602 | 0.885681 |
1% | 9,240,148,509 | 0.96202313 | 0.86569879 | 0.9060769 | 34833.59 | 11.42992 | 0.851444 | 0.80374 | 0.860328 | 0.885121 | |
5% | 9,334,020,605 | 0.69906125 | 0.86225639 | 0.9085593 | 40875.57 | 142.9842 | 0.853147 | 0.828006 | 0.860919 | 0.886632 | |
15% | 7,134,124,262 | 0.57758461 | 0.86198772 | 0.9054768 | 35.83611 | 9.424074 | 0.82911 | 0.829665 | 0.853502 | 0.889904 | |
30% | 4.5422 × 1011 | 0.77400485 | 0.85878719 | 0.9092136 | 1218.304 | 1.569196 | 0.825333 | 0.806418 | 0.865789 | 0.884679 | |
50% | 2.0874 × 1011 | 0.3701973 | 0.85574967 | 0.9067557 | 3102.509 | 10.56086 | 0.847628 | 0.822509 | 0.851845 | 0.888767 | |
5 | 0.1% | 0.93398803 | 0.97807489 | 0.98786916 | 0.9914141 | 0.969994 | 0.980504 | 0.987917 | 0.983266 | 0.98752 | 0.989555 |
1% | 0.93907845 | 0.97746633 | 0.98698452 | 0.9912539 | 0.964727 | 0.981822 | 0.986971 | 0.98311 | 0.98834 | 0.989857 | |
5% | 0.93732391 | 0.97821917 | 0.98765407 | 0.9915809 | 0.969324 | 0.983593 | 0.987118 | 0.985381 | 0.986763 | 0.989947 | |
15% | 0.93685705 | 0.97556275 | 0.98876169 | 0.9919514 | 0.970251 | 0.984432 | 0.988278 | 0.983998 | 0.987323 | 0.990359 | |
30% | 61704.3588 | 0.97781952 | 0.98772586 | 0.9914344 | 0.971497 | 0.98123 | 0.986997 | 0.983168 | 0.987851 | 0.990201 | |
50% | 0.93517417 | 0.97673207 | 0.98746003 | 0.9917618 | 0.973975 | 0.980896 | 0.986541 | 0.983451 | 0.987356 | 0.989454 | |
20 | 0.1% | 0.12285176 | 0.99973734 | 0.99973702 | 0.999817 | 0.999622 | 0.999756 | 0.999787 | 0.999703 | 0.999767 | 0.999772 |
1% | 0.99955224 | 0.99965713 | 0.99974376 | 0.9998317 | 0.999762 | 0.999692 | 0.999785 | 0.999755 | 0.999729 | 0.999804 | |
5% | 0.99960642 | 0.99967657 | 0.99975318 | 0.9998185 | 0.999751 | 0.999771 | 0.999771 | 0.999717 | 0.999769 | 0.999792 | |
15% | 0.99975382 | 0.99962495 | 0.99976403 | 0.9998131 | 0.99971 | 0.999797 | 0.999802 | 0.999726 | 0.999762 | 0.999803 | |
30% | 0.99986221 | 0.99966588 | 0.99976152 | 0.9998227 | 0.999695 | 0.999799 | 0.999779 | 0.999745 | 0.999769 | 0.999796 | |
50% | 0.99994944 | 0.99961342 | 0.99974001 | 0.9998151 | 0.999769 | 0.999815 | 0.999785 | 0.9997 | 0.999785 | 0.999781 | |
50 | 0.1% | 0.99995092 | 0.99995684 | 0.99996116 | 0.9999754 | 0.999963 | 0.99997 | 0.999977 | 0.999957 | 0.999963 | 0.999965 |
1% | 0.99998192 | 0.99995771 | 0.99996247 | 0.9999727 | 0.999968 | 0.999961 | 0.99998 | 0.999957 | 0.99997 | 0.99997 | |
5% | 0.99996342 | 0.99994206 | 0.99996434 | 0.9999717 | 0.999979 | 0.999965 | 0.999967 | 0.999954 | 0.999962 | 0.999966 | |
15% | 0.99991797 | 0.99995585 | 0.99996816 | 0.9999745 | 0.99997 | 0.999972 | 0.999972 | 0.999954 | 0.999963 | 0.999967 | |
30% | 0.99998194 | 0.99995479 | 0.99996308 | 0.9999712 | 0.99997 | 0.999959 | 0.999972 | 0.999958 | 0.99997 | 0.99997 | |
50% | 0.99993474 | 0.99994946 | 0.99997071 | 0.9999754 | 0.999956 | 0.999978 | 0.999973 | 0.999971 | 0.999969 | 0.999969 |
Data | Efficiency | |||
---|---|---|---|---|
Calcium (4 × 4) | 136 | 7.9032 × 10−5 | 6.0528 × 10−5 | 0.76587 |
Dreams (5 × 4) | 233 | 2.2753 × 10−5 | 2.0794 × 10−5 | 0.91389 |
Aberdeen (4 × 5) | 22,361 | 2.5000 × 10−9 | 2.5000 × 10−9 | 1.00000 |
Caithness (4 × 5) | 5387 | 4.8400 × 10−8 | 3.6100 × 10−8 | 0.74587 |
Denmark (4 × 5) | 7025 | 1.9600 × 10−8 | 1.9600 × 10−8 | 1.00000 |
Swedish (4 × 5) | 25,263 | 1.6000 × 10−9 | 1.6000 × 10−9 | 1.00000 |
Visitor (3 × 3) | 132 | 7.5690 × 10−5 | 5.9598 × 10−5 | 0.78740 |
Socec (4 × 6) | 1660 | 3.8440 × 10−7 | 3.6000 × 10−7 | 0.93652 |
Occupation (8 × 8) | 3498 | 1.3690 × 10−7 | 1.2960 × 10−7 | 0.94668 |
Dumping (4 × 3) | 417 | 5.8081 × 10−6 | 5.7600 × 10−6 | 0.99172 |
Ideology (3 × 3) | 1083 | 1.0201 × 10−6 | 8.4640 × 10−7 | 0.82972 |
Status (3 × 3) | 3497 | 3.6100 × 10−8 | 2.8900 × 10−8 | 0.80055 |
Opinion (4 × 4) | 926 | 1.3225 × 10−6 | 1.2544 × 10−6 | 0.94851 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, S.; Cheema, S.A.; Beh, E.J.; Hudson, I.L. Asymptotic Characteristics of the Non-Iterative Estimates of the Linear-by-Linear Association Parameter for Ordinal Log-Linear Models. Computation 2022, 10, 206. https://doi.org/10.3390/computation10120206
Zafar S, Cheema SA, Beh EJ, Hudson IL. Asymptotic Characteristics of the Non-Iterative Estimates of the Linear-by-Linear Association Parameter for Ordinal Log-Linear Models. Computation. 2022; 10(12):206. https://doi.org/10.3390/computation10120206
Chicago/Turabian StyleZafar, Sidra, Salman A. Cheema, Eric J. Beh, and Irene L. Hudson. 2022. "Asymptotic Characteristics of the Non-Iterative Estimates of the Linear-by-Linear Association Parameter for Ordinal Log-Linear Models" Computation 10, no. 12: 206. https://doi.org/10.3390/computation10120206
APA StyleZafar, S., Cheema, S. A., Beh, E. J., & Hudson, I. L. (2022). Asymptotic Characteristics of the Non-Iterative Estimates of the Linear-by-Linear Association Parameter for Ordinal Log-Linear Models. Computation, 10(12), 206. https://doi.org/10.3390/computation10120206