A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
Abstract
1. Introduction
2. Related Works
3. Methodology
3.1. Moon Sighting Parameters
3.2. Pattern Recognizer ANN Architecture
3.3. Training Dataset
4. Results
4.1. ANN Training
4.2. Building a Sample Hijri Calendar for Iraq
5. Discussion
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fatoohi, L.J.; Stephenson, F.R.; Al-Dargazelli, S.S. The Danjon Limit of First Visibility of the Lunar Crescent. Observatory 1998, 118, 65–72. [Google Scholar]
- Schaefer, B.E. The length of the Lunar Month. J. Hist. Astron. 1992, 23, 32–42. [Google Scholar] [CrossRef]
- Ilyas, M. Lunar crescent visibility Criterion and Islamic Calendar. Q. J. R. Astr. Soc. 1994, 35, 425–461. [Google Scholar]
- Bruin, F. The First Visibility of the Lunar Crescent. Vistas Astron. 1977, 12, 331–358. [Google Scholar] [CrossRef]
- Schaefer, B.E.; Ahmad, I.A.; Doggett, L.E. Records for Young Moon Sighting. Q. J. R. Astr. Soc. 1993, 37, 53–56. [Google Scholar]
- Lazli, L.; Boukadoum, M. Hidden neural network for complex pattern recognition: A comparison study with Multi-neural network-based approach. Int. J. Life Sci. Med Res. 2013, 3, 234–245. [Google Scholar] [CrossRef]
- Khodaskar, A.A.; Ladhake, S.A. Pattern recognition: Advanced development, techniques and application for image retrieval. In Proceedings of the IEEE 2014 International Conference on Communication and Network Technologies (ICCNT), Sivakasi, India, 18–19 December 2014; pp. 74–78. [Google Scholar]
- Kim, T.H. Pattern recognition using artificial neural network: A review. In Proceedings of the 4th International Conference on Information Security and Assurance (ISA2010), Miyazaki, Japan, 23–25 June 2010; pp. 138–148. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Fotheringham, J.K. On the Smallest Visible Phase of the Moon. RAS Mon. Notices 1910, 70, 527–532. [Google Scholar] [CrossRef][Green Version]
- Maunder, E.W. On the Smallest Visible Phase of Moon. JBAA 1911, 21, 355–362. [Google Scholar]
- Danjon, A. Jeunes et Vieilles Lunes. l’Astronomie 1932, 46, 57–66. [Google Scholar]
- McNally, D. The length of the lunar crescent. Q. J. R. Astr. Soc. 1983, 24, 417–429. [Google Scholar]
- Schaefer, B.E. Lunar crescent visibility. Q. J. R. Astr. Soc. 1996, 37, 759–768. [Google Scholar]
- Sultan, A.H. First Visibility of The Lunar Crescent Beyond Danjon’s Limit. Observatory 2007, 127, 53–59. [Google Scholar]
- Yallop, B.D. A Method for Predicting the First Sighting of the New Crescent Moon; RGO NAO Technical Note 69; HM Nautical Almanac Office, Royal Greenwich Observatory: Cambridge, UK, 1997; pp. 1–15. [Google Scholar]
- Odeh, M.S. New Criterion for Lunar Crescent Visibility. Exp. Astron. 2006, 18, 39–64. [Google Scholar] [CrossRef]
- Schaefer, B.E. Length of the lunar crescent. Q. J. R. Astr. Soc. 1991, 32, 265–277. [Google Scholar]
- Ilyas, M. Limiting altitude separation in the new Moon’s first visibility criterion. Astron. Astrophys. 1988, 206, 133–135. [Google Scholar]
- Alrefay, T.; Alsaab, S.; Alshehri, F.; Alghamdi, A.; Hadadi, A.; Alotaibi, M.; Almutari, K.; Mubarki, Y. Analysis of Observations of Earliest Visibility of the Lunar crescent. Observatory 2018, 138, 267–291. [Google Scholar]
- Schaefer, B.E. Visibility of the lunar crescent. Q. J. R. Astr. Soc. 1988, 29, 511–523. [Google Scholar]
- Ilyas, M. Lowest Limit of w in the New Moon’s First Visibility Criterion of Bruin and its Comparison with the Maunder Criterion. Q. J. R. Astr. Soc. 1981, 22, 154–159. [Google Scholar]
- Caldwell, J.A.R.; Laney, C.D. First Visibility of the Lunar Crescent. Mon. Notes Astron. Soc. S. Afr. 1999, 58, 150–163. [Google Scholar]
- Caldwell, J.A.R. Moonset lag with arc of light predicts crescent visibility. MNASSA 2011, 70, 220–235. [Google Scholar]
- Qureshi, M.S. Computational Astronomy and the Earliest Visibility of Lunar Crescent; Institute of Space and Planetary Astrophysics, University of Karachi: Karachi, Pakistan, 2005; pp. 1–15. [Google Scholar]
- McNaughton, D. A Universal Islamic Calendar. Homdard Islamicus 1997, 20, 77–85. [Google Scholar]
- Doggett, L.E.; Schaefer, B.E. Lunar Crescent Visibility. Icarus 1994, 107, 388–403. [Google Scholar] [CrossRef]
- Al-Mostafa, Z. Lunar Calendar the New Saudi Arabian Criterion. Observatory 2005, 125, 25–30. [Google Scholar]
- Meeus, J. Astronomical Algorithms, 2nd ed.; Willmann-Bell Inc: Richmond, VA, USA, 1998. [Google Scholar]
- Bayesian Regularization Backpropagation. Available online: https://www.mathworks.com/help/deeplearning/ref/trainbr.html (accessed on 5 October 2022).
- ICOP Crescent Observation Results. Available online: https://www.astronomycenter.net/res.html (accessed on 1 September 2022).





| Research Author | Minimum Value of Elongation |
|---|---|
| Fotheringham [10] | 12° |
| Maunder [11] | 11° |
| Ilyas [19] | 10.5° |
| Yallop [16] | 10° |
| Fatoohi [1] | 7.5° |
| Danjon [12] and Schaefer [21] | 7° |
| Odeh [17] | 6.4° |
| McNally [13] | 5.5° |
| q Value | Crescent Condition |
|---|---|
| Easily visible | |
| Conditionally visible | |
| May need optical aid | |
| Should need optical aid | |
| Invisible |
| q Value | Crescent Condition |
|---|---|
| Easily visible | |
| Needs optical aid | |
| Invisible |
| q Value | Crescent Condition |
|---|---|
| Easily visible | |
| May need optical aid | |
| Needs optical aid | |
| Invisible |
| C | H. Y. | M. | Sight Date | Best Time (UT) | Lat | Lon | Age | W | ARCL | ARCV | DAZ | SO | A |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| O | 1422 | 12 | 12 February 2002 | 16:30 | 43.9 | 18.4 | 8.8 | 0.08 | 5.58 | 0.85 | 5.51 | I | I |
| S | 1408 | 2 | 23 September 1987 | 23:48 | 37.2 | −84.1 | 20.65 | 0.22 | 9.39 | 3.29 | 8.8 | I | I |
| O | 1423 | 2 | 13 April 2002 | 19:20 | 30.5 | −9.7 | 23.96 | 0.26 | 10.57 | 9.14 | 5.33 | I(T) | P |
| S | 1361 | 12 | 8 December 1942 | 21:48 | 40.7 | −74 | 19.8 | 0.34 | 11.32 | 9.78 | 5.74 | V(F) | P |
| O | 1423 | 6 | 9 August 2002 | 17:55 | 10.3 | 9.8 | 22.65 | 0.41 | 12.57 | 12.4 | 2.04 | V | V |
| S | 1393 | 2 | 5 March 1973 | 23:53 | 40 | −85 | 23.75 | 0.38 | 12.24 | 12.2 | 0.97 | V(V) | V |
| H. Y. | M. | Sight Day | w | ARCV | DAZ | Pred. | First Day (1) | Days | First Day (2) | Days |
|---|---|---|---|---|---|---|---|---|---|---|
| 1440 | 1 | 10 September 2018 | 0.37 | 9.08 | 7.73 | P | 11 September 2018 | 29 | 11 September 2018 | 30 |
| 2 | 9 October 2018 | 0.11 | 6.26 | 2.1 | I | 10 October 2018 | 30 | 11 October 2018 | 29 | |
| 3 | 8 November 2018 | 0.3 | 9.54 | 5.73 | P | 9 November 2018 | 29 | 9 November 2018 | 30 | |
| 4 | 7 December 2018 | 0.03 | 3.43 | 0.27 | I | 8 December 2018 | 30 | 9 December 2018 | 30 | |
| 5 | 6 January 2019 | 0.06 | 4.34 | 2.24 | I | 7 January 2019 | 30 | 8 January 2019 | 30 | |
| 6 | 5 February 2019 | 0.13 | 5.93 | 4.42 | I | 6 February 2019 | 30 | 7 February 2019 | 29 | |
| 7 | 7 March 2019 | 0.26 | 8.58 | 6.19 | P | 8 March 2019 | 29 | 8 March 2019 | 30 | |
| 8 | 5 April 2019 | 0.07 | 1.25 | 5.28 | I | 6 April 2019 | 30 | 7 April 2019 | 30 | |
| 9 | 5 May 2019 | 0.19 | 5.75 | 6.64 | I | 6 May 2019 | 29 | 7 May 2019 | 29 | |
| 10 | 3 June 2019 | 0.04 | 0.5 | 3.83 | I | 4 June 2019 | 30 | 5 June 2019 | 29 | |
| 11 | 3 July 2019 | 0.32 | 7.88 | 7.69 | P | 4 July 2019 | 29 | 4 July 2019 | 30 | |
| 12 | 1 August 2019 | 0.13 | 5.51 | 4.3 | I | 2 August 2019 | 29 | 3 August 2019 | 29 | |
| 1441 | 1 | 30 August 2019 | 0.04 | 3.83 | 0.26 | I | 31 August 2019 | 30 | 1 September 2019 | 29 |
| 2 | 29 September 2019 | 0.38 | 9.71 | 7.22 | P | 30 September 2019 | 29 | 30 September 2019 | 30 | |
| 3 | 28 October 2019 | 0.11 | 5.97 | 2.21 | I | 29 October 2019 | 30 | 30 October 2019 | 29 | |
| 4 | 27 November 2019 | 0.33 | 9 | 7.17 | P | 28 November 2019 | 29 | 28 November 2019 | 30 | |
| 5 | 26 December 2019 | 0.03 | 2.69 | 2.36 | I | 27 December 2019 | 30 | 28 December 2019 | 30 | |
| 6 | 25 January 2020 | 0.14 | 5.5 | 5.38 | I | 26 January 2020 | 30 | 27 January 2020 | 29 | |
| 7 | 24 February 2020 | 0.28 | 8.55 | 6.68 | P | 25 February 2020 | 29 | 25 February 2020 | 30 | |
| 8 | 24 March 2020 | 0.07 | 0.91 | 5.13 | I | 25 March 2020 | 30 | 26 March 2020 | 30 | |
| 9 | 23 April 2020 | 0.1 | 3.86 | 5.23 | I | 24 April 2020 | 30 | 25 April 2020 | 29 | |
| 10 | 23 May 2020 | 0.24 | 7.91 | 5.96 | P | 24 May 2020 | 29 | 24 May 2020 | 30 | |
| 11 | 21 June 2020 | 0.04 | 3.06 | 2.49 | I | 22 June 2020 | 30 | 23 June 2020 | 29 | |
| 12 | 21 July 2020 | 0.35 | 9.49 | 6.91 | P | 22 July 2020 | 29 | 22 July 2020 | 30 | |
| 1442 | 1 | 19 August 2020 | 0.16 | 6.89 | 3.39 | I | 20 August 2020 | 29 | 21 August 2020 | 29 |
| 2 | 17 September 2020 | 0.05 | 4.29 | 0.55 | I | 18 September 2020 | 30 | 19 September 2020 | 29 | |
| 3 | 17 October 2020 | 0.32 | 8.39 | 7 | P | 18 October 2020 | 29 | 18 October 2020 | 30 | |
| 4 | 15 November 2020 | 0.06 | 3.75 | 2.59 | I | 16 November 2020 | 30 | 17 November 2020 | 29 | |
| 5 | 15 December 2020 | 0.34 | 7.78 | 8.46 | P | 16 December 2020 | 29 | 16 December 2020 | 30 | |
| 6 | 13 January 2021 | 0.08 | 2.23 | 4.85 | I | 14 January 2021 | 30 | 15 January 2021 | 29 | |
| 7 | 12 February 2021 | 0.25 | 7.42 | 7 | P | 13 February 2021 | 29 | 13 February 2021 | 30 | |
| 8 | 13 March 2021 | 0.06 | 0.61 | 4.99 | I | 14 March 2021 | 30 | 15 March 2021 | 30 | |
| 9 | 12 April 2021 | 0.09 | 4.09 | 4.54 | I | 13 April 2021 | 30 | 14 April 2021 | 29 | |
| 10 | 12 May 2021 | 0.17 | 7.43 | 4.24 | P | 13 May 2021 | 29 | 13 May 2021 | 30 | |
| 11 | 10 June 2021 | 0.01 | 1.59 | 0.49 | I | 11 June 2021 | 30 | 12 June 2021 | 30 | |
| 12 | 10 July 2021 | 0.12 | 6.56 | 2.61 | I | 11 July 2021 | 29 | 12 July 2021 | 29 | |
| 1443 | 1 | 8 August 2021 | 0.04 | 3.34 | 1.71 | I | 9 August 2021 | 30 | 10 August 2021 | 29 |
| 2 | 7 September 2021 | 0.17 | 7.13 | 3.85 | P | 8 September 2021 | 29 | 8 September 2021 | 30 | |
| 3 | 6 October 2021 | 0.03 | 3.06 | 0.29 | I | 7 October 2021 | 30 | 8 October 2021 | 30 | |
| 4 | 5 November 2021 | 0.22 | 5.76 | 7.07 | I | 6 November 2021 | 30 | 7 November 2021 | 29 | |
| 5 | 4 December 2021 | 0.03 | 0.88 | 3.29 | I | 6 December 2021 | 29 | 6 December 2021 | 29 | |
| 6 | 3 January 2022 | 0.34 | 7.01 | 9.04 | P | 4 January 2022 | 29 | 4 January 2022 | 30 | |
| 7 | 1 February 2022 | 0.11 | 2.37 | 5.97 | I | 2 February 2022 | 30 | 3 February 2022 | 29 | |
| 8 | 3 March 2022 | 0.32 | 9.37 | 6.3 | P | 4 March 2022 | 29 | 4 March 2022 | 30 | |
| 9 | 1 April 2022 | 0.06 | 2.88 | 3.68 | I | 2 April 2022 | 30 | 3 April 2022 | 29 | |
| 10 | 1 May 2022 | 0.16 | 7.58 | 2.94 | P | 2 May 2022 | 30 | 2 May 2022 | 30 | |
| 11 | 30 May 2022 | 0.01 | 1.64 | 0.33 | I | 1 June 2022 | 29 | 1 June 2022 | 30 | |
| 12 | 29 June 2022 | 0.1 | 6.19 | 1.12 | I | 30 June 2022 | 30 | 1 July 2022 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allawi, Z.T. A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq. Computation 2022, 10, 186. https://doi.org/10.3390/computation10100186
Allawi ZT. A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq. Computation. 2022; 10(10):186. https://doi.org/10.3390/computation10100186
Chicago/Turabian StyleAllawi, Ziyad T. 2022. "A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq" Computation 10, no. 10: 186. https://doi.org/10.3390/computation10100186
APA StyleAllawi, Z. T. (2022). A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq. Computation, 10(10), 186. https://doi.org/10.3390/computation10100186
