Visual Saliency Model-Based Image Watermarking with Laplacian Distribution
Abstract
:1. Introduction
2. Proposed Watermark Embedding Algorithm
2.1. Watermark Embedding
2.2. Calculation of the Adaptive Embedding Strength Factor
3. Watermark Detection
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tew, Y.Q.; Wong, K.S. An overview of information hiding in H.264/AVC compressed video. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 305–319. [Google Scholar] [CrossRef]
- Wang, C.X.; Zhang, T.; Wan, W.B.; Han, X.Y.; Xu, M.L. A novel STDM watermarking using visual saliency-based JND model. Information 2017, 8, 103. [Google Scholar] [CrossRef]
- Chang, C.S.; Shen, J.-J. Features classification forest: A novel development that is adaptable to robust blind watermarking techniques. IEEE Trans. Image Process. 2017, 26, 3921–3935. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-G.; Zhu, G.P.; Shi, Y.-Q. Transportation spherical watermarking. IEEE Trans. Image Process. 2018, 27, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.J.; Lee, J.S.; Lee, M.S.; Kang, H.G. SVD-based adaptive QIM watermarking on stereo audio signals. IEEE Trans. Multimedia 2018, 20, 45–54. [Google Scholar]
- Guo, Y.F.; Au, O.C.; Wang, R.; Fang, L.; Cao, X.C. Halftone image watermarking by content aware double-sided embedding error diffusion. IEEE Trans. Image Process. 2018, 27, 3387–3402. [Google Scholar] [PubMed]
- Chen, B.; Wornell, G.W. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 2001, 47, 1423–1443. [Google Scholar] [CrossRef]
- Li, Q.; Cox, I.J. Using perceptual models to improve fidelity and provide resistance to valumetric scaling for quantization index modulation watermarking. IEEE Trans. Inf. Forensics Secur. 2007, 2, 127–139. [Google Scholar] [CrossRef]
- Kalantari, N.K.; Ahadi, S.M. Logarithmic quantization index modulation for perceptually better data diding. IEEE Trans. Image Process. 2010, 19, 1504–1518. [Google Scholar] [CrossRef] [PubMed]
- Zareian, M.; Tohidypour, H.R. A novel gain invariant quantization-based watermarking approach. IEEE Trans. Infor. Forensics Secur. 2014, 9, 1804–1813. [Google Scholar] [CrossRef]
- Wan, W.B.; Liu, J.; Sun, J.D.; Gao, D. Improved logarithmic spread transform dither modulation using a robust perceptual model. Multimedia Tools Appl. 2015, 74, 1–22. [Google Scholar] [CrossRef]
- Liu, J.H.; Xu, Y.Y.; Wang, S.; Zhu, C. Complex wavelet-domain image watermarking algorithm using L1-norm function-based quantization. Circuits Syst. Signal Process. 2018, 37, 1268–1286. [Google Scholar] [CrossRef]
- Cox, I.J.; Kilian, J.; Leighton, T. Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 1997, 6, 1673–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barni, M.; Bartolini, F.; Piva, A. Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. Image Process. 2001, 10, 783–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadreazami, H.; Ahmad, O.; Swamy, M.N.S. A study of multiplicative watermark detection in the contourlet domain using alphastable distributions. IEEE Trans. Image Process. 2014, 23, 4348–4360. [Google Scholar] [CrossRef] [PubMed]
- Sadreazami, H.; Ahmad, O.; Swamy, M.N.S. Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution. IEEE Trans. Multimedia 2016, 18, 196–207. [Google Scholar] [CrossRef]
- Akhaee, M.A.; Sahraeian, S.M.E.; Sankur, B.; Marvasti, F. Robust scaling-based image watermarking using maximum-likelihood decoder with optimum strength factor. IEEE Trans. Multimedia 2009, 11, 822–833. [Google Scholar] [CrossRef]
- Akhaee, M.A.; Sahraeian, S.M.E.; Marvasti, F. Contourlet-based image watermarking using optimum detector in a noisy environment. IEEE Trans. Image Process. 2010, 19, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.B.; Yang, G.Y.; Solomon, A.; Villasenor, J. Visibility of wavelet quantization noise. IEEE Trans. Image Process. 1997, 6, 1164–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, N.; Singh, K. Robust image-adaptive watermarking using an adjustable dynamic strength factor. Signal Image Video Process. 2015, 9, 1531–1542. [Google Scholar] [CrossRef]
- Khalilian, H.; Bajic, I.V. Video watermarking with empirical PCA-based decoding. IEEE Trans. Image Process. 2013, 22, 4825–4840. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.H.; Zeng, N.N.; Xue, J.R.; Li, C. Authentication and copyright protection watermarking scheme for H.264 based on visual saliency and secret sharing. Multimedia Tools Appl. 2015, 74, 2991–3011. [Google Scholar] [CrossRef]
- Agarwal, H.; Sen, D.; Raman, B.; Kankanhalli, M. Visible watermarking based on importance and just noticeable distortion of image regions. Multimedia Tools Appl. 2016, 75, 7605–7629. [Google Scholar] [CrossRef]
- Castiglione, A.; Pizzolante, R.; Palmieri, F.; Masucci, B.; Carpentieri, B.; Santis, A.D.; Castiglione, A. On-board format-independent security of functional magnetic resonance images. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Santhi, V.; Acharjya, D.P. Improving the security of digital images in hadamard transform domain using digital watermarking. Biom. Concepts Methodol. Tools Appl. 2017, 27. [Google Scholar] [CrossRef]
- Yang, X.K.; Lin, W.S.; Lu, Z.K.; Ong, E.; Yao, S. Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile. IEEE Trans. Circuits Syst. Video Technol. 2005, 15, 745–752. [Google Scholar]
- Itti, L.; Koch, C.; Ernst, N. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Itti, L. Automatic foveation for video compression using a neurobio-logical model of visual attention. IEEE Trans. Image Process. 2004, 13, 1304–1318. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
Image | Barbara | Lena |
---|---|---|
PSNR (dB)/SSIM | PSNR (dB)/SSIM | |
Gau.noise (var = 20) | 43.53/0.9541 | 42.57/0.9132 |
Gau. noise (var = 30) | 41.08/0.9103 | 40.36/0.8769 |
JPEG (20%) | 40.17/0.9026 | 39.60/0.9008 |
JPEG (60%) | 44.15/0.9620 | 43.73/0.9582 |
Median filtering () | 45.64/0.9690 | 45.92/0.9883 |
Gaussian filtering () | 43.22/0.9638 | 42.89/0.9456 |
Scaling (0.75) | 45.85/0.9754 | 46.09/0.9772 |
Scaling (1.20) | 44.76/0.9420 | 45.90/0.9691 |
Rotation () | 40.94/0.9280 | 41.25/0.9158 |
Rotation () | 38.39/0.8218 | 38.77/0.8506 |
Contr.enhan.[0.2,0.8] | 39.78/0.9116 | 39.22/0.9005 |
Cropping () | 39.34/0.9107 | 39.08/0.8982 |
Image | Bridge | Crowd |
---|---|---|
PSNR (dB)/SSIM | PSNR (dB)/SSIM | |
Gau. noise (var = 20) | 41.75/0.9061 | 42.63/0.9309 |
Gau. noise (var = 30) | 39.84/0.8722 | 40.23/0.9026 |
JPEG (20%) | 39.17/0.8694 | 40.18/0.9157 |
JPEG (60%) | 42.36/0.9423 | 43.45/0.9498 |
Median filtering () | 46.03/0.9987 | 46.48/0.9993 |
Gaussian filtering () | 43.77/0.9637 | 44.34/0.9765 |
Scaling (0.75) | 45.34/0.9653 | 45.76/0.9718 |
Scaling (1.20) | 45.39/0.9546 | 44.17/0.9452 |
Rotation () | 42.12/0.9458 | 42.79/0.9489 |
Rotation () | 39.56/0.9074 | 40.24/0.9117 |
Contr.enhan. [0.2,0.8] | 40.38/0.9123 | 40.79/0.9223 |
Cropping () | 39.33/0.9173 | 39.76/0.9145 |
Attacks | Barbara | Lena | Bridge | Crowd |
---|---|---|---|---|
Gau. noise (var = 20) | 3.39 | 2.03 | 2.77 | 2.91 |
Gau. noise (var = 30) | 4.60 | 4.12 | 4.94 | 4.25 |
JPEG (20%) | 3.78 | 2.24 | 2.90 | 3.10 |
JPEG (60%) | 0.00 | 0.00 | 0.00 | 0.00 |
Median filtering () | 8.44 | 9,75 | 6.37 | 7.58 |
Gaussian filtering () | 4.16 | 5.20 | 5.33 | 4.84 |
Scaling (0.75) | 1.73 | 0.78 | 1.15 | 1.56 |
Scaling (1.20) | 2.34 | 1.62 | 1.48 | 1.90 |
Rotation () | 9.20 | 8.98 | 9.17 | 9.35 |
Rotation () | 18.69 | 17.43 | 19.06 | 19.83 |
Contr.enhan. [0.2,0.8] | 12.05 | 13.57 | 12.73 | 14.62 |
Cropping () | 14.78 | 15.94 | 16.64 | 15.88 |
Parameter | Configuration |
---|---|
Simulation platform | Window 7, MATLABR2016 |
Test images | Barbara, Lena, Bridge and Crowd |
Image size | 512 × 512 |
Wavelet filters | “bior 4.4” |
Embedding bits | 1024 |
Decomposition scale | Three |
Watermark strength factor | 0.025 |
Image assessment metrics | PSNR and SSIM |
Robustness metric | BER |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Liu, J.; Zhao, M. Visual Saliency Model-Based Image Watermarking with Laplacian Distribution. Information 2018, 9, 239. https://doi.org/10.3390/info9090239
Liu H, Liu J, Zhao M. Visual Saliency Model-Based Image Watermarking with Laplacian Distribution. Information. 2018; 9(9):239. https://doi.org/10.3390/info9090239
Chicago/Turabian StyleLiu, Hongmei, Jinhua Liu, and Mingfeng Zhao. 2018. "Visual Saliency Model-Based Image Watermarking with Laplacian Distribution" Information 9, no. 9: 239. https://doi.org/10.3390/info9090239
APA StyleLiu, H., Liu, J., & Zhao, M. (2018). Visual Saliency Model-Based Image Watermarking with Laplacian Distribution. Information, 9(9), 239. https://doi.org/10.3390/info9090239