Measuring Bikeshare Access/Egress Transferring Distance and Catchment Area around Metro Stations from Smartcard Data
Abstract
:1. Introduction
- How to measure metro–bikeshare access and egress transferring distance and catchment areas from smartcard data.
- Do metro–bikeshare transferring distance and catchment area vary much across demographic groups, locations, and time?
2. Literature Review
2.1. Metro–Bikeshare Usage Pattern
2.2. Metro–Bicycle Transferring Distance and Catchment Area
3. Context and Method
3.1. Study Area
3.2. Data Source
3.3. Identification of Metro–Bikeshare Transfers
3.4. Access/Egress Distance Calculation
3.4.1. Network-Based Distance Calculation
3.4.2. Threshold of Distance Determination
3.5. Catchment Area Delineation
4. Results
4.1. Access and Egress Transfer Characteristics
4.2. Access/Egress Distance of Metro Station
4.3. Catchment Area of Metro Stations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, Y.; Chan, E.H.W.; Yung, E.H.K. Analysis of the Mechanisms Contributing to Spatial Mismatch in Transitional Chinese Cities. J. Urban Plan. Dev. 2014, 140, 04013011. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S. Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing. Transport. Res. A Pol. 2017, 99, 46–60. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R. Cycling towards a more sustainable transport future. Transp. Rev. 2017, 37, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Choi, K. Bicycle-based transit-oriented development as an alternative to overcome the criticisms of the conventional transit-oriented development. Int. J. Sustain. Transp. 2016, 10, 975–984. [Google Scholar] [CrossRef]
- Meddin, R.; Demaio, P.J. The Bike-Sharing World Map. 2018. Available online: http://www. bikesharingworld.com (accessed on 14 November 2018).
- Ji, Y.; Fan, Y.; Ermagun, A.; Cao, X.; Wang, W.; Das, K. Public bicycle as a feeder mode to rail transit in China: The role of gender, age, income, trip purpose, and bicycle theft experience. Int. J. Sustain. Transp. 2017, 11, 308–317. [Google Scholar] [CrossRef]
- Shaheen, S.A.; Guzman, S.; Zhang, H. Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future. Transp. Res. Rec. 2010, 2143, 159–167. [Google Scholar] [CrossRef]
- Cervero, R.; Gorham, R. Commuting in Transit Versus Automobile Neighborhoods. J. Am. Plan. Assoc. 1995, 61, 210–225. [Google Scholar] [CrossRef]
- Demaio, P.; Gifford, J. Will Smart Bikes Succeed as Public Transportation in the United States? J. Public Transp. 2004, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Yang, M.; Ji, Y.; Jin, Y.; Tan, X. Understanding Bikeshare Mode as a Feeder to Metro by Isolating Metro–Bicycle Transfers from Smart Card Data. Transp. Policy 2018, 71, 57–69. [Google Scholar] [CrossRef]
- Yang, M.; Liu, X.; Wang, W.; Li, Z.; Zhao, J. Empirical Analysis of a Mode Shift to Using Public Bicycles to Access the Suburban Metro: Survey of Nanjing, China. J. Urban Plan. Dev. 2016, 142, 05015011. [Google Scholar] [CrossRef]
- Bachand-Marleau, J.; Larsen, J.; El-Geneidy, A.M. Much-Anticipated Marriage of Cycling and Transit How Will It Work? Transp. Res. Rec. 2011, 2247, 109–117. [Google Scholar] [CrossRef]
- Chen, L.; Pel, A.J.; Chen, X.; Sparing, D.; Hansen, I.A. Determinants of Bicycle Transfer Demand at Metro Stations: Analysis of Stations in Nanjing, China. Transp. Res. Rec. 2012, 2276, 131–137. [Google Scholar] [CrossRef]
- Erdoğan, S.; Liu, C.; Ma, T. Bicycle Sharing and Transit: Does Capital Bikeshare Affect Metrorail Ridership in Washington, D.C. Transp. Res. Rec. 2015, 2534, 1–9. [Google Scholar]
- Hong, Z.; Mittal, A.; Mahmassani, H.S. Effect of Bicycle-Sharing on Public Transport Accessibility: Application to Chicago Divvy Bicycle-sharing System. Transp. Res. Rec. 2016, 16, 6930. [Google Scholar]
- Griffin, G.P.; Sener, I.N. Planning for Bike Share Connectivity to Rail Transit. J. Public Transp. 2016, 19, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.-J.; Chen, F.; Xu, T.-K. Interchange between Metro and Other Modes: Access Distance and Catchment Area. J. Urban Plan. Dev. 2016, 142, 04016012. [Google Scholar] [CrossRef]
- Reynolds, J. Techniques of Research and Investigation Written Report Combining Bicycles and Public Transport; The University of Melbourne: Parkville, Australia, 2005. [Google Scholar]
- Taylor, D.B.; Mahmassani, H.S. Analysis of Stated Preferences for Intermodal Bicycle-Transit Interfaces. Transp. Res. Rec. 1996, 1556, 86–95. [Google Scholar] [CrossRef]
- Parker, A. Dual mode transportation: Making public transport work. Pedal Power 1985, 3, 28–31. [Google Scholar]
- Rastogi, R.; Rao, K.V.K. Travel Characteristics of Commuters Accessing Transit: Case Study. J. Transp. Eng. 2003, 129, 684–694. [Google Scholar] [CrossRef]
- Zuo, T.; Wei, H.; Rohne, A. Determining transit service coverage by non-motorized accessibility to transit: Case study of applying GPS data in Cincinnati metropolitan area. J. Transp. Geogr. 2018, 67, 1–11. [Google Scholar] [CrossRef]
- Suau-Sanchez, P.; Burghouwt, G.; Pallares-Barbera, M. An appraisal of the CORINE land cover database in airport catchment area analysis using a GIS approach. J. Air Transp. Manag. 2014, 34, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Widaningrum, D.L. A GIS–Based Approach for Catchment Area Analysis of Convenience Store. Procedia Comput. Sci. 2015, 72, 511–518. [Google Scholar] [CrossRef]
- Gutiérrez, J.; García-Palomares, J.C. Distance-measure impacts on the calculation of transport service areas using GIS. Environ. Plan. B Urban Anal. City Sci. 2008, 35, 480–503. [Google Scholar] [CrossRef]
- Cheng, C.L.; Agrawal, A.W. TTSAT: A new approach to mapping transit accessibility. J. Public Transp. 2010, 13, 55–72. [Google Scholar] [CrossRef]
- Flamm, B.J.; Rivasplata, C.R. Public Transit Catchment Areas. Transp. Res. Rec. 2018, 2419, 101–108. [Google Scholar] [CrossRef]
- The Population of Nanjing. Available online: http://www.chamiji.com/201806046098.html (accessed on 14 November 2018).
- Car Ownership in Nanjing. Available online: http://js.xhby.net/system/2018/01/15/030783221.shtml (accessed on 14 November 2018).
- Nanjing Metro. Available online: http://www.njmetro.com.cn/service_04_new.aspx (accessed on 14 November 2018).
- Sina, J. Efforts of Nanjing Transportation Bureau in the Past Five Years. Available online: http://jiangsu.sina.com.cn/news/2017-07-22/detail-ifyihrit1200076.shtml (accessed on 14 November 2018).
- Zhao, J.; Wang, J.; Deng, W. Exploring bikesharing travel time and trip chain by gender and day of the week. Transp. Res. C 2015, 58, 251–264. [Google Scholar] [CrossRef]
- Ma, X.; Ji, Y.; Yang, M.; Jin, Y.; Tan, X. Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data. Transp. Polic 2018, 71, 56–69. [Google Scholar] [CrossRef]
- Romanillos, G.; Moyagómez, B.; Zaltzaustwick, M.; Lamíquizdaudén, P.J. The pulse of the cycling city: Visualising Madrid bike share system GPS routes and cycling flow. J. Maps 2018, 14, 34–43. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X. Exploring built environment correlates of walking distance of transit egress in the Twin Cities. J. Transp. Geogr. 2017, 64, 132–138. [Google Scholar] [CrossRef]
- Hino, S.; Kishi, K.; Satoh, K. Development of the Complementary Accessibility Index and Evaluation of Public Transportation System. J. City Plan. Inst. Japan 2000, 35, 475–480. [Google Scholar]
- Hochmair, H.H. In Assessment of Service Areas for Bicycle Accessibility to Transit Stations. Int. J. Sustain. Transp. 2015, 9, 15–29. [Google Scholar] [CrossRef]
- Romanillos, G.; Austwick, M.Z. Madrid cycle track: Visualizing the cyclable city. J. Maps 2016, 12, 1218–1226. [Google Scholar] [CrossRef]
Mode | Transaction Date | Member ID | Trip Type | Transaction Time | Metro Station ID | Bikeshare |
---|---|---|---|---|---|---|
Metro→Bikeshare | 2016-03-09 | 97007007**** | Metro | 08:42:58 | 24 | - |
2016-03-09 | 97007007**** | Bikeshare | 08:46:06 | - | 11001 | |
Bikeshare→Metro | 2016-03-09 | 97007007**** | Bikeshare | 09:15:55 | - | 11001 |
2016-03-09 | 97007007**** | Metro | 09:16:59 | 24 | - |
Transfer Distance (m) | Transfer Time (min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | |
Metro→Bikeshare | ||||||||||
100 | 2% | 43% | 49% | 50% | 51% | 52% | 52% | 52% | 52% | 52% |
200 | 2% | 65% | 74% | 78% | 79% | 80% | 80% | 80% | 80% | 80% |
300 | 2% | 70% | 80% | 86% | 91% | 93% | 93% | 93% | 93% | 93% |
400 | 2% | 70% | 81% | 88% | 91% | 94% | 94% | 94% | 94% | 94% |
500 | 2% | 70% | 82% | 90% | 93% | 95% | 95% | 95% | 95% | 95% |
600 | 2% | 70% | 82% | 90% | 94% | 97% | 97% | 98% | 99% | 99% |
700 | 2% | 70% | 82% | 90% | 94% | 97% | 98% | 99% | 99% | 99% |
800 | 2% | 70% | 82% | 91% | 94% | 97% | 98% | 99% | 100% | 100% |
900 | 2% | 70% | 82% | 91% | 94% | 97% | 98% | 99% | 100% | 100% |
1000 | 2% | 70% | 82% | 91% | 94% | 97% | 98% | 99% | 100% | 100% |
Bikeshare→Metro | ||||||||||
100 | 49% | 51% | 52% | 52% | 52% | 53% | 53% | 53% | 53% | 53% |
200 | 74% | 81% | 83% | 83% | 83% | 84% | 84% | 84% | 84% | 84% |
300 | 79% | 83% | 88% | 91% | 91% | 92% | 93% | 93% | 93% | 93% |
400 | 79% | 90% | 95% | 95% | 95% | 96% | 96% | 96% | 97% | 97% |
500 | 79% | 90% | 95% | 95% | 95% | 96% | 96% | 97% | 98% | 98% |
600 | 79% | 91% | 95% | 95% | 96% | 97% | 98% | 98% | 99% | 99% |
700 | 79% | 91% | 95% | 95% | 96% | 97% | 98% | 99% | 99% | 99% |
800 | 79% | 91% | 95% | 96% | 96% | 98% | 98% | 99% | 100% | 100% |
900 | 79% | 91% | 95% | 96% | 96% | 98% | 98% | 99% | 100% | 100% |
1000 | 79% | 91% | 95% | 96% | 96% | 98% | 98% | 99% | 100% | 100% |
Variables | Regression Models | R2 | sig | 85th Distance (m) |
---|---|---|---|---|
Egress | ||||
Weekend | Y = −0.1608 + 0.00090x − 2.12 × 10−7x2 + 1.51 × 10−11x3 | 0.973 | 0.000 | 1777.3 |
Weekday | Y = −0.2021 + 0.00093x − 2.15 × 10−7x2 + 1.51 × 10−11x3 | 0.963 | 0.000 | 1798.2 |
Morning peak | Y = −0.3443 + 0.00105x − 2.50 × 10−7x2 + 1.82 × 10−11x3 | 0.934 | 0.000 | 1807.3 |
Evening peak | Y = −0.2209 + 0.00091x − 2.06 × 10−7x2 + 1.41 × 10−11x3 | 0.961 | 0.000 | 1881.8 |
Urban | Y = −0.2348 + 0.00098x − 2.35 × 10−7x2 + 1.69 × 10−11x3 | 0.957 | 0.000 | 1079.6 |
Suburban | Y = −0.0619 + 0.00075x − 1.67 × 10−7x2 + 1.14 × 10−11x3 | 0.960 | 0.000 | 1211.6 |
Male | Y = −0.2047 + 0.00090x − 2.03 × 10−7x2 + 1.38 × 10−11x3 | 0.966 | 0.000 | 1846.9 |
Female | Y = −0.2517 + 0.00110x−2.92 × 10−7x2 + 2.47 × 10−11x3 | 0.976 | 0.000 | 1689.7 |
Age Group 1 | Y = −0.3096 + 0.00143x − 4.92 × 10−7x2 + 5.30 × 10−11x3 | 0.952 | 0.000 | 1349.4 |
Age Group 2 | Y = −0.2366 + 0.00094x − 2.15 × 10−7x2 + 1.48 × 10−111x3 | 0.959 | 0.000 | 1802.8 |
Age Group 3 | Y = −0.1688 + 0.00089x − 2.07 × 10−7x2 + 1.45 × 10−11x3 | 0.970 | 0.000 | 1823.3 |
Age Group 4 | Y = −0.2016 + 0.00010x − 2.59 × 10−7x2 + 2.06 × 10−11x3 | 0.965 | 0.000 | 1715.5 |
Age Group 5 | Y = −0.2359 + 0.00107x − 3.03 × 10−7x2 + 2.72 × 10−11x3 | 0.977 | 0.000 | 1710.0 |
Access | ||||
Weekend | Y = −0.2240 + 0.00100x − 2.56 × 10−7x2 + 2.00 × 10−11x3 | 0.972 | 0.000 | 1727.9 |
Weekday | Y = −0.1856 + 0.00086x − 1.88 × 10−7x2 + 1.24 × 10−11x3 | 0.957 | 0.000 | 1882.3 |
Morning peak | Y = −0.2510 + 0.00098x − 2.36 × 10−7x2 + 1.72 × 10−11x3 | 0.950 | 0.000 | 1799.9 |
Evening peak | Y = −0.3679 + 0.00099x − 2.22 × 10−7x2 + 1.53 × 10−11x3 | 0.931 | 0.000 | 2003.0 |
Urban | Y = −0.2606 + 0.00101x − 2.45 × 10−7x2 + 1.82 × 10−11x3 | 0.956 | 0.000 | 1754.0 |
Suburban | Y = −0.0675 + 0.00068x−1.38 × 10−7x2 + 8.64 × 10−11x3 | 0.968 | 0.000 | 2190.3 |
Male | Y = −0.2328 + 0.00093x − 2.15 × 10−7x2 + 1.52 × 10−11x3 | 0.968 | 0.000 | 1867.7 |
Female | Y = −0.1779 + 0.00087x − 1.92 × 10−7x2 + 1.24 × 10−11x3 | 0.955 | 0.000 | 1833.4 |
Age Group 1 | Y = −0.1257 + 0.00076x + 8.13 × 10−7x2−5.35 × 10−11x3 | 0.967 | 0.000 | 1510.9 |
Age Group 2 | Y = −0.2847 + 0.00102x − 2.49 × 10−7x2 + 1.85 × 10−11x3 | 0.966 | 0.000 | 1782.7 |
Age Group 3 | Y = −0.1492 + 0.00081x − 1.70 × 10−7x2 + 1.06 × 10−11x3 | 0.966 | 0.000 | 1935.3 |
Age Group 4 | Y = −0.2276 + 0.00090x − 2.27 × 10−7x2 + 1.68 × 10−11x3 | 0.964 | 0.000 | 1864.8 |
Age Group 5 | Y = −0.1153 + 0.00081x − 1.91 × 10−7x2 + 1.31 × 10−11x3 | 0.964 | 0.000 | 1802.2 |
Mean Distance (m) | Levene’s Test for Equality of Variances | t-Test for Equality of Means | ||||
---|---|---|---|---|---|---|
F | sig | t | sig | |||
Access | Demographic groups | |||||
Male | 1183.2 | 0.082 | 0.775 | 2.572 | 0.010 | |
Female | 1142.5 | |||||
Spatial dimensions | ||||||
Urban | 1105.9 | 758.297 | 0.000 | −13.104 | 0.000 | |
Suburban | 1346.5 | |||||
Temporal dimensions | ||||||
Weekend | 1106.8 | 0.387 | 0.534 | −2.965 | 0.003 | |
Weekday | 1173.6 | |||||
Morning peak | 1170.6 | 56.092 | 0.000 | −5.343 | 0.000 | |
Evening peak | 1281.3 | |||||
Egress | Demographic groups | |||||
Male | 1148.6 | 18.170 | 0.000 | 6.156 | 0.000 | |
Female | 1064.1 | |||||
Spatial dimensions | ||||||
Urban | 1079.6 | 575.417 | 0.000 | −8.006 | 0.000 | |
Suburban | 1121.6 | |||||
Temporal dimensions | ||||||
Weekend | 1104.3 | 26.328 | 0.000 | −0.310 | 0.742 | |
Weekday | 1110.2 | |||||
Morning peak | 1128.9 | 197.996 | 0.000 | −4.263 | 0.000 | |
Evening peak | 1207.0 |
ANOVA | LSD Test | |||||
---|---|---|---|---|---|---|
F | sig. | Group | Mean Difference | sig. | ||
Access | 8.941 | 0.000 | (1) | (3) | −228.660 | 0.008a |
(4) | −262.995 | 0.002a | ||||
(2) | (3) | −75.024 | 0.000a | |||
(4) | −109.360 | 0.000a | ||||
(4) | (5) | 98.295 | 0.004a | |||
Egress | 4.557 | 0.001 | (1) | (2) | −215.729 | 0.000a |
(3) | −239.450 | 0.000a | ||||
(4) | −200.281 | 0.001a | ||||
(5) | −180.170 | 0.005a | ||||
(3) | (5) | 59.280 | 0.037a |
85th Distance (m) | Catchment Area | |||
---|---|---|---|---|
Euclidean (km2) | Network-Based (km2) | Percentage (Network-Based/Euclidean) | ||
Sanshanjie Station | ||||
Male | 1449.5 | 6.60 | 6.20 | 93.91% |
Female | 1307.6 | 5.37 | 5.03 | 93.65% |
Weekday | 1420.3 | 6.34 | 5.85 | 92.29% |
Weekend | 1389.7 | 6.07 | 5.73 | 94.42% |
Morning peak | 1144.1 | 4.11 | 3.88 | 94.41% |
Evening peak | 1460.3 | 6.70 | 6.20 | 92.50% |
Age Group 1 | 984.8 | 3.05 | 2.87 | 94.11% |
Age Group 2 | 1394.3 | 6.11 | 5.64 | 92.26% |
Age Group 3 | 1428.6 | 6.41 | 6.04 | 94.22% |
Age Group 4 | 1359.0 | 5.80 | 5.45 | 94.00% |
Age Group 5 | 1151.2 | 4.16 | 3.96 | 95.15% |
Average | 1317.2 | 5.52 | 5.17 | 93.72% |
Xinglongdajie Station | ||||
Male | 1737.0 | 9.48 | 8.11 | 85.59% |
Female | 1524.7 | 7.30 | 6.08 | 83.22% |
Weekday | 1699.1 | 9.07 | 7.69 | 84.75% |
Weekend | 1593.7 | 7.98 | 6.82 | 85.44% |
Morning peak | 1504.7 | 7.11 | 5.94 | 83.55% |
Evening peak | 1612.3 | 8.17 | 6.79 | 83.08% |
Age Group 1 | 1328.6 | 5.55 | 4.60 | 82.98% |
Age Group 2 | 1599.0 | 8.03 | 6.88 | 85.71% |
Age Group 3 | 1665.0 | 8.71 | 7.42 | 85.16% |
Age Group 4 | 1556.6 | 7.61 | 6.36 | 83.51% |
Age Group 5 | 1436.0 | 6.48 | 5.39 | 83.13% |
Average | 1568.8 | 7.77 | 6.55 | 84.19% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Jin, Y.; He, M. Measuring Bikeshare Access/Egress Transferring Distance and Catchment Area around Metro Stations from Smartcard Data. Information 2018, 9, 289. https://doi.org/10.3390/info9110289
Ma X, Jin Y, He M. Measuring Bikeshare Access/Egress Transferring Distance and Catchment Area around Metro Stations from Smartcard Data. Information. 2018; 9(11):289. https://doi.org/10.3390/info9110289
Chicago/Turabian StyleMa, Xinwei, Yuchuan Jin, and Mingjia He. 2018. "Measuring Bikeshare Access/Egress Transferring Distance and Catchment Area around Metro Stations from Smartcard Data" Information 9, no. 11: 289. https://doi.org/10.3390/info9110289
APA StyleMa, X., Jin, Y., & He, M. (2018). Measuring Bikeshare Access/Egress Transferring Distance and Catchment Area around Metro Stations from Smartcard Data. Information, 9(11), 289. https://doi.org/10.3390/info9110289