Predicting Cyber-Events by Leveraging Hacker Sentiment
Abstract
:1. Introduction
2. Related Work
2.1. Sentiment Analysis in Cyber-Security
2.2. Predicting Cyber-Attack
2.3. Dark Web Research
3. Data
3.1. Hacker Forum Texts
3.2. Cyber-Event Data
- endpoint malware (EP-Mal): a malicious software installation, such as ransomware, spyware, and adware, is discovered on a company endpoint device.
- malicious destination (Mal-Dest): a visit by a user to a URL or IP address that is malicious in nature or a compromised website.
- malicious email (Mal-Email): receipt of an email that contains a malicious email attachment and/or a link to a known malicious destination.
4. Sentiment Analysis
4.1. VADER
- Increase intensity due to exclamation point
- Increase intensity due to all caps in the presence of other non-all cap words
- Increase intensity with degree modifiers i.e., extremely
- Negate sentiment with contrastive conjunction i.e., but
- Examine the preceding tri-gram to identify cases where negation flips the polarity of the text.
4.2. LIWC
4.3. SentiStrength
5. Time-Series Prediction
5.1. ARIMA
5.2. Parameter Tuning
5.3. Complexity
6. Cyber-Event Prediction
7. Methodology
7.1. Processing the Data
7.2. Evaluating Sentiment Analysis
7.3. Computing Sentiment Signal
7.4. Standardizing the Score
7.5. Compute Correlations to Find Potential Signals
7.6. Testing Signals with ARIMAX
7.7. Scoring
7.8. External Signals
- ARIMAX: is the same model outlined in Section 5.1; however, time-series counts of malicious activity are acquired from https://abuse.ch and used in conjunction with historical data.
- Baseline: is the exact same model in Section 5.1 with no external signal and using only historical ground truth data to predict the future rate of attack.
- Daywise-Baserate: is the same as the ARIMAX model mentioned above; however, the model takes day of the week into consideration assuming that the event rate for each day of the week is not the same.
- Deep Exploit: is an ARIMA model that is based on the vulnerability analysis determined by [24]. This method, referred to as DarkEmbed, learns the embeddings of dark web posts and then uses a trained exploit classifier to predict which vulnerabilities in dark web posts might be exploited.
- Dark Mentions: Is an extension of [34] which predicts if a disclosed vulnerability will be exploited based on a variety of data sources in addition to the dark web using methods still being developed. These predictions are used to construct a rule-based forecasting method based on keyword mentions in Dark Web forums and marketplaces.
8. Results
8.1. Organization A
8.2. Organization B
8.3. Discussion
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
AMT | Amazon Mechanical Turk |
ARIMA | autoregressive integrated moving average |
ASU | Arizona State University |
CAMP | Cyber-Attacker Model Profile |
DDoS | Distributed Denial of Service |
DIB | Defense Industrial Base |
F1 | harmonic average of precision and recall |
IPV4 | Internet Protocol version 4 |
L-BFGS | limited-memory Broyden-Fletcher-Goldfarb-Shanno |
LIWC | Linguistic Inquiry Word Count |
NLP | natural language programming |
MA | moving average |
MDPI | Multidisciplinary Digital Publishing Institute |
P | precision |
R | recall |
TOR | The Onion Router |
URL | universal resource locater |
VADER | Valence Aware Dictionary for sEntiment Reasoning |
Appendix A
Month | Evt | Warn | Signal | P | R | F1 |
---|---|---|---|---|---|---|
July | 15 | 14 | forum211-Senti | 0.57 | 0.53 | 0.55 |
July | 15 | 29 | forum196-LIWC | 0.41 | 0.80 | 0.55 |
July | 15 | 27 | forum89-Senti | 0.41 | 0.73 | 0.52 |
July | 15 | 12 | forum111-LIWC | 0.58 | 0.47 | 0.52 |
July | 15 | 9 | baseline | 0.67 | 0.40 | 0.50 |
August | 19 | 14 | baseline | 0.71 | 0.53 | 0.61 |
August | 19 | 11 | forum111-LIWC | 0.82 | 0.47 | 0.60 |
August | 19 | 35 | forum8-Vader | 0.46 | 0.84 | 0.59 |
August | 19 | 8 | daywise base rate | 1.00 | 0.42 | 0.59 |
August | 19 | 23 | forum230-Senti | 0.52 | 0.63 | 0.57 |
September | 18 | 16 | forum111LIWC | 0.69 | 0.61 | 0.65 |
September | 18 | 32 | forum250LIWC | 0.50 | 0.89 | 0.64 |
September | 18 | 35 | forum211vader | 0.46 | 0.89 | 0.60 |
September | 18 | 41 | forum147LIWC | 0.41 | 0.94 | 0.58 |
September | 18 | 41 | forum194LIWC | 0.41 | 0.94 | 0.58 |
October | 6 | 14 | daywise base rate | 0.29 | 0.67 | 0.40 |
October | 6 | 35 | baseline | 0.17 | 1.00 | 0.29 |
October | 6 | 29 | forum8vader | 0.17 | 0.83 | 0.29 |
October | 6 | 37 | forum111LIWC | 0.16 | 1.00 | 0.28 |
October | 6 | 43 | forum211vader | 0.14 | 1.00 | 0.24 |
November | 27 | 38 | forum6senti | 0.63 | 0.89 | 0.74 |
November | 27 | 42 | forum147LIWC | 0.60 | 0.93 | 0.72 |
November | 27 | 40 | forum111LIWC | 0.60 | 0.89 | 0.72 |
November | 27 | 41 | forum211senti | 0.59 | 0.89 | 0.71 |
November | 27 | 43 | forum121LIWC | 0.56 | 0.89 | 0.69 |
December | 13 | 18 | arimax | 0.33 | 0.46 | 0.39 |
December | 13 | 16 | dark mentions | 0.31 | 0.38 | 0.34 |
December | 13 | 80 | forum121LIWC | 0.16 | 1.00 | 0.28 |
December | 13 | 73 | forum194LIWC | 0.16 | 0.92 | 0.28 |
December | 13 | 10 | deep exploit | 0.30 | 0.23 | 0.26 |
January | 1 | 15 | dark mentions | 0.07 | 1.00 | 0.13 |
January | 1 | 37 | forum6senti | 0.03 | 1.00 | 0.05 |
January | 1 | 61 | forum147LIWC | 0.02 | 1.00 | 0.03 |
January | 1 | 64 | baseline | 0.02 | 1.00 | 0.03 |
January | 1 | 19 | arimax | 0.00 | 0.00 | 0.00 |
Month | Evt | Warn | Signal | P | R | F1 |
---|---|---|---|---|---|---|
July | 4 | 5 | baseline | 0.40 | 0.50 | 0.44 |
July | 4 | 3 | daywise base rate | 0.33 | 0.25 | 0.29 |
July | 4 | 17 | dark mentions | 0.12 | 0.50 | 0.19 |
July | 4 | 42 | forum266-LIWC | 0.05 | 0.50 | 0.09 |
July | 4 | 0 | arimax | 0.00 | 0.00 | 0.00 |
August | 10 | 6 | baseline | 1.00 | 0.60 | 0.75 |
August | 10 | 10 | daywise base rate | 0.60 | 0.60 | 0.60 |
August | 10 | 8 | dark mentions | 0.50 | 0.40 | 0.44 |
August | 10 | 0 | arimax | 0.00 | 0.00 | 0.00 |
August | 10 | 0 | deep exploit | 0.00 | 0.00 | 0.00 |
September | 4 | 15 | forum194LIWC | 0.20 | 0.75 | 0.32 |
September | 4 | 15 | forum210LIWC | 0.20 | 0.75 | 0.32 |
September | 4 | 15 | forum264LIWC | 0.20 | 0.75 | 0.32 |
September | 4 | 15 | forum6senti | 0.20 | 0.75 | 0.32 |
September | 4 | 15 | forum194LIWC | 0.20 | 0.75 | 0.32 |
October | 2 | 0 | arimax | 0.00 | 0.00 | 0.00 |
October | 2 | 0 | dark mentions | 0.00 | 0.00 | 0.00 |
October | 2 | 5 | daywise base rate | 0.00 | 0.00 | 0.00 |
October | 2 | 0 | deep exploit | 0.00 | 0.00 | 0.00 |
November | 1 | 5 | daywise base rate | 0.20 | 1.00 | 0.33 |
November | 1 | 6 | forum111LIWC | 0.17 | 1.00 | 0.29 |
November | 1 | 6 | forum147LIWC | 0.17 | 1.00 | 0.29 |
November | 1 | 30 | forum210senti | 0.03 | 1.00 | 0.06 |
November | 1 | 0 | arimax | 0.00 | 0.00 | 0.00 |
December | 1 | 10 | daywise base rate | 0.10 | 1.00 | 0.18 |
December | 1 | 11 | dark mentions | 0.09 | 1.00 | 0.17 |
December | 1 | 0 | arimax | 0.00 | 0.00 | 0.00 |
December | 1 | 0 | deep exploit | 0.00 | 0.00 | 0.00 |
January | 2 | 24 | forum111LIWC | 0.08 | 1.00 | 0.15 |
January | 2 | 0 | arimax | 0.00 | 0.00 | 0.00 |
January | 2 | 10 | dark mentions | 0.00 | 0.00 | 0.00 |
January | 2 | 9 | daywise base rate | 0.00 | 0.00 | 0.00 |
January | 2 | 0 | deep exploit | 0.00 | 0.00 | 0.00 |
Month | Evt | Warn | Signal | P | R | F1 |
---|---|---|---|---|---|---|
July | 26 | 21 | forum210-LIWC | 0.76 | 0.62 | 0.68 |
July | 26 | 27 | forum250-LIWC | 0.67 | 0.69 | 0.68 |
July | 26 | 19 | forum147-LIWC | 0.74 | 0.54 | 0.62 |
July | 26 | 36 | forum159-Senti | 0.53 | 0.73 | 0.61 |
July | 26 | 17 | forum28-LIWC | 0.76 | 0.50 | 0.60 |
August | 11 | 17 | forum179-VADER | 0.59 | 0.91 | 0.71 |
August | 11 | 15 | forum250-LIWC | 0.60 | 0.82 | 0.69 |
August | 11 | 7 | daywise base rate | 0.86 | 0.55 | 0.67 |
August | 11 | 18 | forum210-Senti | 0.50 | 0.82 | 0.62 |
August | 11 | 25 | forum159-Senti | 0.44 | 1.00 | 0.61 |
September | 15 | 36 | forum264LIWC | 0.36 | 0.87 | 0.51 |
September | 15 | 17 | daywise base rate | 0.47 | 0.53 | 0.50 |
September | 15 | 18 | forum210senti | 0.44 | 0.53 | 0.48 |
September | 15 | 45 | forum147LIWC | 0.31 | 0.93 | 0.47 |
September | 15 | 46 | forum6senti | 0.28 | 0.87 | 0.43 |
October | 11 | 14 | daywise base rate | 0.50 | 0.64 | 0.56 |
October | 11 | 8 | deep exploit | 0.50 | 0.36 | 0.42 |
October | 11 | 42 | forum264LIWC | 0.17 | 0.64 | 0.26 |
October | 11 | 51 | forum194LIWC | 0.16 | 0.73 | 0.26 |
October | 11 | 102 | forum8vader | 0.11 | 1.00 | 0.19 |
November | 50 | 16 | daywise base rate | 0.69 | 0.22 | 0.33 |
November | 50 | 4 | deep exploit | 0.75 | 0.06 | 0.11 |
November | 50 | 0 | arimax | 0.00 | 0.00 | 0.00 |
November | 50 | 0 | dark mentions | 0.00 | 0.00 | 0.00 |
December | 17 | 22 | daywise base rate | 0.55 | 0.71 | 0.62 |
December | 17 | 10 | deep exploit | 0.80 | 0.47 | 0.59 |
December | 17 | 5 | dark mentions | 0.80 | 0.24 | 0.36 |
December | 17 | 0 | arimax | 0.00 | 0.00 | 0.00 |
January | 40 | 18 | daywise base rate | 0.94 | 0.43 | 0.59 |
January | 40 | 8 | deep exploit | 0.75 | 0.15 | 0.25 |
January | 40 | 6 | dark mentions | 0.83 | 0.13 | 0.22 |
January | 40 | 0 | arimax | 0.00 | 0.00 | 0.00 |
Month | Evt | Warn | Signal | P | R | F1 |
---|---|---|---|---|---|---|
July | 18 | 47 | forum264LIWC | 0.38 | 1.00 | 0.55 |
July | 18 | 50 | forum250LIWC | 0.36 | 1.00 | 0.53 |
July | 18 | 43 | baseline | 0.37 | 0.89 | 0.52 |
July | 18 | 35 | forum8senti | 0.37 | 0.72 | 0.49 |
July | 18 | 50 | forum111LIWC | 0.32 | 0.89 | 0.47 |
August | 28 | 39 | baseline | 0.67 | 0.93 | 0.78 |
August | 28 | 31 | forum264LIWC | 0.65 | 0.71 | 0.68 |
August | 28 | 32 | forum121LIWC | 0.63 | 0.71 | 0.67 |
August | 28 | 35 | forum211vader | 0.60 | 0.75 | 0.67 |
August | 28 | 33 | forum194LIWC | 0.61 | 0.71 | 0.66 |
September | 31 | 40 | baseline | 0.60 | 0.77 | 0.68 |
September | 31 | 38 | forum210senti | 0.61 | 0.74 | 0.67 |
September | 31 | 37 | forum121LIWC | 0.57 | 0.68 | 0.62 |
September | 31 | 46 | forum219vader | 0.50 | 0.74 | 0.60 |
September | 31 | 30 | forum194LIWC | 0.60 | 0.58 | 0.59 |
October | 53 | 44 | forum210LIWC | 0.77 | 0.64 | 0.70 |
October | 53 | 47 | baseline | 0.74 | 0.66 | 0.70 |
October | 53 | 41 | forum264LIWC | 0.78 | 0.60 | 0.68 |
October | 53 | 39 | forum250LIWC | 0.74 | 0.55 | 0.63 |
October | 53 | 40 | forum8vader | 0.73 | 0.55 | 0.62 |
November | 37 | 52 | daywise base rate | 0.62 | 0.86 | 0.72 |
November | 37 | 49 | forum121LIWC | 0.57 | 0.76 | 0.65 |
November | 37 | 53 | forum147LIWC | 0.55 | 0.78 | 0.64 |
November | 37 | 50 | forum111LIWC | 0.56 | 0.76 | 0.64 |
November | 37 | 50 | forum194LIWC | 0.56 | 0.76 | 0.64 |
December | 35 | 30 | daywise base rate | 0.67 | 0.57 | 0.62 |
December | 35 | 27 | baseline | 0.63 | 0.49 | 0.55 |
December | 35 | 23 | forum250LIWC | 0.65 | 0.43 | 0.52 |
December | 35 | 28 | forum194LIWC | 0.57 | 0.46 | 0.51 |
December | 35 | 29 | forum147LIWC | 0.55 | 0.46 | 0.50 |
January | 43 | 42 | baseline | 0.60 | 0.58 | 0.59 |
January | 43 | 37 | daywise base rate | 0.59 | 0.51 | 0.55 |
January | 43 | 35 | forum219vader | 0.60 | 0.49 | 0.54 |
January | 43 | 37 | forum111LIWC | 0.57 | 0.49 | 0.53 |
January | 43 | 37 | forum147LIWC | 0.57 | 0.49 | 0.53 |
Month | Evt | Warn | Signal | P | R | F1 |
---|---|---|---|---|---|---|
July | 6 | 8 | forum130vader | 0.63 | 0.83 | 0.71 |
July | 6 | 8 | forum8senti | 0.63 | 0.83 | 0.71 |
July | 6 | 8 | forum111LIWC | 0.50 | 0.67 | 0.57 |
July | 6 | 12 | forum194LIWC | 0.42 | 0.83 | 0.56 |
July | 6 | 9 | forum210senti | 0.44 | 0.67 | 0.53 |
August | 8 | 6 | forum210senti | 0.67 | 0.50 | 0.57 |
August | 8 | 17 | daywise base rate | 0.35 | 0.75 | 0.48 |
August | 8 | 13 | forum211senti | 0.38 | 0.63 | 0.48 |
August | 8 | 5 | forum210LIWC | 0.60 | 0.38 | 0.46 |
August | 8 | 21 | forum8vader | 0.29 | 0.75 | 0.41 |
September | 6 | 11 | daywise base rate | 0.55 | 1.00 | 0.71 |
September | 6 | 9 | forum210LIWC | 0.56 | 0.83 | 0.67 |
September | 6 | 10 | forum250LIWC | 0.30 | 0.50 | 0.37 |
September | 6 | 11 | forum121LIWC | 0.27 | 0.50 | 0.35 |
September | 6 | 1 | forum147LIWC | 1.00 | 0.17 | 0.29 |
October | 9 | 8 | daywise base rate | 0.25 | 0.22 | 0.24 |
October | 9 | 2 | forum121LIWC | 0.50 | 0.11 | 0.18 |
October | 9 | 114 | forum210senti | 0.03 | 0.33 | 0.05 |
October | 9 | 0 | arimax | 0.00 | 0.00 | 0.00 |
October | 9 | 0 | dark mentions | 0.00 | 0.00 | 0.00 |
November | 4 | 14 | daywise base rate | 0.29 | 1.00 | 0.44 |
November | 4 | 5 | forum210LIWC | 0.20 | 0.25 | 0.22 |
November | 4 | 21 | forum219vader | 0.10 | 0.50 | 0.16 |
November | 4 | 9 | forum211vader | 0.11 | 0.25 | 0.15 |
November | 4 | 13 | forum210senti | 0.08 | 0.25 | 0.12 |
December | 3 | 12 | daywise base rate | 0.17 | 0.67 | 0.27 |
December | 3 | 0 | arimax | 0.00 | 0.00 | 0.00 |
December | 3 | 0 | dark mentions | 0.00 | 0.00 | 0.00 |
December | 3 | 0 | deep exploit | 0.00 | 0.00 | 0.00 |
January | 5 | 18 | daywise base rate | 0.22 | 0.80 | 0.35 |
January | 5 | 0 | arimax | 0.00 | 0.00 | 0.00 |
January | 5 | 0 | dark mentions | 0.00 | 0.00 | 0.00 |
January | 5 | 0 | deep exploit | 0.00 | 0.00 | 0.00 |
Month | Evt | Warn | Signal | P | R | F1 |
---|---|---|---|---|---|---|
July | 24 | 49 | forum210LIWC | 0.33 | 0.67 | 0.44 |
July | 24 | 56 | forum210senti | 0.30 | 0.71 | 0.43 |
July | 24 | 75 | baseline | 0.23 | 0.71 | 0.34 |
July | 24 | 81 | daywise base rate | 0.21 | 0.71 | 0.32 |
July | 24 | 81 | forum130vader | 0.21 | 0.71 | 0.32 |
August | 57 | 55 | forum111LIWC | 0.55 | 0.53 | 0.54 |
August | 57 | 70 | baseline | 0.49 | 0.60 | 0.54 |
August | 57 | 91 | daywise base rate | 0.43 | 0.68 | 0.53 |
August | 57 | 107 | forum147LIWC | 0.39 | 0.74 | 0.51 |
August | 57 | 153 | forum6senti | 0.33 | 0.88 | 0.48 |
September | 179 | 70 | daywise base rate | 0.76 | 0.30 | 0.43 |
September | 179 | 102 | forum210senti | 0.58 | 0.33 | 0.42 |
September | 179 | 180 | forum210LIWC | 0.40 | 0.40 | 0.40 |
September | 179 | 100 | forum147LIWC | 0.54 | 0.30 | 0.39 |
September | 179 | 76 | baseline | 0.57 | 0.24 | 0.34 |
October | 71 | 125 | daywise base rate | 0.50 | 0.87 | 0.63 |
October | 71 | 118 | baseline | 0.49 | 0.82 | 0.61 |
October | 71 | 90 | forum211senti | 0.53 | 0.68 | 0.60 |
October | 71 | 142 | forum194LIWC | 0.44 | 0.89 | 0.59 |
October | 71 | 150 | forum210senti | 0.42 | 0.89 | 0.57 |
November | 426 | 104 | daywise base rate | 0.67 | 0.16 | 0.26 |
November | 426 | 205 | forum264LIWC | 0.39 | 0.19 | 0.25 |
November | 426 | 118 | baseline | 0.55 | 0.15 | 0.24 |
November | 426 | 251 | forum210LIWC | 0.31 | 0.18 | 0.23 |
November | 426 | 579 | forum210senti | 0.20 | 0.27 | 0.23 |
December | 51 | 69 | forum210LIWC | 0.30 | 0.41 | 0.35 |
December | 51 | 329 | forum147LIWC | 0.09 | 0.55 | 0.15 |
December | 51 | 313 | forum111LIWC | 0.08 | 0.51 | 0.14 |
December | 51 | 249 | forum194LIWC | 0.08 | 0.41 | 0.14 |
December | 51 | 284 | forum211senti | 0.08 | 0.45 | 0.14 |
January | 10 | 12 | deep exploit | 0.25 | 0.30 | 0.27 |
January | 10 | 103 | daywise base rate | 0.10 | 1.00 | 0.18 |
January | 10 | 186 | baseline | 0.05 | 1.00 | 0.10 |
January | 10 | 226 | forum111LIWC | 0.04 | 1.00 | 0.08 |
References
- Dutt, V.; Ahn, Y.S.; Gonzalez, C. Cyber situation awareness: Modeling detection of cyber attacks with instance-based learning theory. Hum. Factors 2013, 55, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Jajodia, S.; Liu, P.; Swarup, V.; Wang, C. Cyber Situational Awareness; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Franke, U.; Brynielsson, J. Cyber situational awareness–a systematic review of the literature. Comput. Secur. 2014, 46, 18–31. [Google Scholar] [CrossRef]
- Freud, S.; Strachey, J. The psychopathology of everyday life. The Standard Edition of the complete psychological works of Sigmund Freud. Trans. James Strachey 1901, 24, 1953–1974. [Google Scholar]
- Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs up?: Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing, Philadelphia, PA, USA, 6–7 July 2002; pp. 79–86. [Google Scholar]
- Pfleeger, S.L.; Caputo, D.D. Leveraging behavioral science to mitigate cyber security risk. Comput. Secur. 2012, 31, 597–611. [Google Scholar] [CrossRef]
- Agarwal, S.; Sureka, A. Applying social media intelligence for predicting and identifying on-line radicalization and civil unrest oriented threats. arXiv, 2015; arXiv:1511.06858. [Google Scholar]
- Asur, S.; Huberman, B.A. Predicting the future with social media. In Proceedings of the 2010 IEEE/WIC/ ACM International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, 31 August–3 September 2010; pp. 492–499. [Google Scholar]
- Kalampokis, E.; Tambouris, E.; Tarabanis, K. Understanding the predictive power of social media. Internet Res. 2013, 23, 544–559. [Google Scholar] [CrossRef]
- Macdonald, M.; Frank, R.; Mei, J.; Monk, B. Identifying digital threats in a hacker web forum. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, France, 25–28 August 2015; pp. 926–933. [Google Scholar]
- Al-Rowaily, K.; Abulaish, M.; Haldar, N.A.H.; Al-Rubaian, M. BiSAL–A bilingual sentiment analysis lexicon to analyze Dark Web forums for cyber security. Digit. Investig. 2015, 14, 53–62. [Google Scholar] [CrossRef]
- Chen, H. Sentiment and affect analysis of dark web forums: Measuring radicalization on the internet. In Proceedings of the 2008 IEEE International Conference on Intelligence and Security Informatics, Taipei, Taiwan, 17–20 June 2008; pp. 104–109. [Google Scholar]
- Park, H.; Jung, S.O.D.; Lee, H.; In, H.P. Cyber weather forecasting: Forecasting unknown internet worms using randomness analysis. In Proceedings of the IFIP International Information Security Conference, Heraklion, Greece, 4–6 June 2012; pp. 376–387. [Google Scholar]
- Pontes, E.; Guelfi, A.E.; Kofuji, S.T.; Silva, A.A. Applying multi-correlation for improving forecasting in cyber security. In Proceedings of the Sixth International Conference on Digital Information Management, Melbourne, Australia, 26–28 September 2011; pp. 179–186. [Google Scholar]
- Leslie, N.O.; Harang, R.E.; Knachel, L.P.; Kott, A. Statistical models for the number of successful cyber intrusions. J. Def. Model. Simul. 2018, 15, 49–63. [Google Scholar] [CrossRef]
- Zhang, S.; Ou, X.; Caragea, D. Predicting cyber risks through national vulnerability database. Inf. Secur. J. 2015, 24, 194–206. [Google Scholar] [CrossRef]
- Nahar, V.; Unankard, S.; Li, X.; Pang, C. Sentiment analysis for effective detection of cyber bullying. In Proceedings of the Web Technologies and Applications—14th Asia-Pacific Web Conference, APWeb 2012, Kunming, China, 11–13 April 2012; pp. 767–774. [Google Scholar]
- Gandotra, E.; Bansal, D.; Sofat, S. Computational techniques for predicting cyber threats. In Intelligent Computing, Communication and Devices, Advance in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Dingledine, R.; Mathewson, N.; Syverson, P. Tor: The Second-Generation Onion Router; Technical report; Naval Research Lab: Washington, DC, USA, 2004. [Google Scholar]
- Nunes, E.; Diab, A.; Gunn, A.; Marin, E.; Mishra, V.; Paliath, V.; Robertson, J.; Shakarian, J.; Thart, A.; Shakarian, P. Darknet and deepnet mining for proactive cybersecurity threat intelligence. In Proceedings of the 2016 IEEE Conference on Intelligence and Security Informatics (ISI), Tucson, AZ, USA, 28–30 September 2016; pp. 7–12. [Google Scholar]
- Lacey, D.; Salmon, P.M. It’s dark in there: Using systems analysis to investigate trust and engagement in dark web forums. In Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics, Los Angeles, CA, USA, 2–7 August 2015; pp. 117–128. [Google Scholar]
- Sapienza, A.; Bessi, A.; Damodaran, S.; Shakarian, P.; Lerman, K.; Ferrara, E. Early warnings of cyber threats in online discussions. In Proceeding of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; pp. 667–674. [Google Scholar]
- Sabottke, C.; Suciu, O.; Dumitras, T. Vulnerability disclosure in the age of social media: Exploiting twitter for predicting real-world exploits. In Proceedings of the USENIX Security Symposium, Washington, DC, USA, 12–14 August 2015; pp. 1041–1056. [Google Scholar]
- Tavabi, N.; Goyal, P.; Almukaynizi, M.; Shakarian, P.; Lerman, K. DarkEmbed: Exploit prediction with neural language models. In Proceedings of the Thirtieth Annual Conference on Innovative Applications of Artificial Intelligence, New Orleans, LA, USA, 2–7 Feburary 2018. [Google Scholar]
- Watters, P.A.; McCombie, S.; Layton, R.; Pieprzyk, J. Characterising and predicting cyber attacks using the Cyber Attacker Model Profile (CAMP). J. Money Laund. Control. 2012, 15, 430–441. [Google Scholar] [CrossRef]
- Robertson, J.; Diab, A.; Marin, E.; Nunes, E.; Paliath, V.; Shakarian, J.; Shakarian, P. Darkweb Cyber Threat Intelligence Mining; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ribeiro, F.N.; Araújo, M.; Gonçalves, P.; Gonçalves, M.A.; Benevenuto, F. SentiBench—A benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 2016, 5, 1–29. [Google Scholar] [CrossRef]
- Hutto, C.; Gilbert, E. VADER: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, Ann Arbor, MI, USA, 1–4 June 2014. [Google Scholar]
- Pennebaker, J.W.; Francis, M.E.; Booth, R.J. Linguistic Inquiry and Word Count: LIWC 2001; Lawrence Erlbaum Associates: Mahway, NJ, USA, 2001. [Google Scholar]
- Thelwal, M. Heart and soul: Sentiment strength detection in the social web with SentiStrength. Cyberemotion 2013, 1–14. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010. [Google Scholar]
- Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. 1955, 2, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Almukaynizi, M.; Nunes, E.; Dharaiya, K.; Senguttuvan, M.; Shakarian, J.; Shakarian, P. Proactive identification of exploits in the wild through vulnerability mentions online. In Proceedings of the 2017 International Conference on Cyber Conflict (CyCon U.S.), Washington, DC, USA, 7–8 November 2017; pp. 82–88. [Google Scholar]
Organization A | Organization B | |||||
---|---|---|---|---|---|---|
Month | EP-Mal | Mal-Dest | Mal-Email | EP-Mal | Mal-Dest | Mal-Email |
July | 15 | 4 | 26 | 18 | 6 | 24 |
August | 19 | 10 | 11 | 28 | 8 | 57 |
September | 18 | 4 | 15 | 31 | 6 | 179 |
October | 6 | 2 | 11 | 53 | 9 | 71 |
November | 27 | 1 | 50 | 37 | 4 | 426 |
December | 13 | 1 | 17 | 35 | 3 | 51 |
January | 1 | 2 | 40 | 43 | 5 | 10 |
Forum# | Sent | Lag | Correlation | p Value | Events |
---|---|---|---|---|---|
84 | LIWC | −11 | 0.2170 | 0.000055 | EP-Mal |
84 | LIWC | −12 | 0.2221 | 0.000037 | EP-Mal |
84 | LIWC | −14 | 0.2185 | 0.000052 | EP-Mal |
219 | VADER | −18 | −0.2329 | 0.000079 | EP-Mal |
264 | LIWC | −10 | 0.2472 | 0.000040 | EP-Mal |
264 | LIWC | −12 | 0.2362 | 0.000095 | EP-Mal |
264 | LIWC | −15 | 0.2380 | 0.000091 | EP-Mal |
261 | LIWC | −3 | 0.2173 | 0.000043 | Mal-Dest |
266 | Senti | −27 | −0.6243 | 0.000080 | Mal-Dest |
159 | Senti | −14 | 0.8498 | 0.000008 | Mal-Email |
266 | Senti | −14 | −0.5517 | 0.000058 | Mal-Email |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deb, A.; Lerman, K.; Ferrara, E. Predicting Cyber-Events by Leveraging Hacker Sentiment. Information 2018, 9, 280. https://doi.org/10.3390/info9110280
Deb A, Lerman K, Ferrara E. Predicting Cyber-Events by Leveraging Hacker Sentiment. Information. 2018; 9(11):280. https://doi.org/10.3390/info9110280
Chicago/Turabian StyleDeb, Ashok, Kristina Lerman, and Emilio Ferrara. 2018. "Predicting Cyber-Events by Leveraging Hacker Sentiment" Information 9, no. 11: 280. https://doi.org/10.3390/info9110280
APA StyleDeb, A., Lerman, K., & Ferrara, E. (2018). Predicting Cyber-Events by Leveraging Hacker Sentiment. Information, 9(11), 280. https://doi.org/10.3390/info9110280