Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making
Abstract
:1. Introduction
2. Some Basic Concepts of LNNs
- (1)
- Ordering: si ≥ sj if i ≥ j.
- (2)
- Negation operator: Neg (si) = sτ + 1−i.
- (3)
- Maximum operator: Max (si, sj) = si if i ≥ j.
- (4)
- Minimum operator: Min (si, sj) = sj if i ≥ j.
3. Cosine Measures of LNNs
- (p1)
- 0 ≤ CiLNNs (E, G) ≤ 1;
- (p2)
- CiLNNs (E, G) = CiLNNs (G, E);
- (p3)
- If E = G, then CiLNNs (G, E) = 1.
- (p1)
- 0 ≤ CωiLNNs (E, G) ≤ 1;
- (p2)
- CωiLNNs (E, G) = CωiLNNs (G, E);
- (p3)
- If E = G, then CωiLNNs = 1.
4. MAGDM Method Based on the Cosine Measures of LNNs
5. Practical Example and Comparison Analysis
5.1. Practical Example
5.2. Related Comparison
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E.; Verdegay, L. A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 1996, 79, 73–87. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Wang, J.H.; Hao, J.Y. A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2006, 14, 435–445. [Google Scholar] [CrossRef]
- Martı´nez, L.; Herrera, F. An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges. Inf. Sci. 2012, 207, 1–18. [Google Scholar] [CrossRef]
- José, M.M.; Anna, M.G.-L. Induced 2-tuple linguistic generalized aggregation operators and their application in decision-making. Inf. Sci. 2013, 236, 1–16. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. Multi-criteria group decision making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. 2016, 18, 81–97. [Google Scholar] [CrossRef]
- Liu, P.D.; Teng, F. An extended TODIM method for multiple attribute group decision-making based on 2-dimension uncertain linguistic variable. Complexity 2016, 21, 20–30. [Google Scholar] [CrossRef]
- Liu, P.D.; He, L.; Yu, X. Generalized hybrid aggregation operators based on the 2-dimension uncertain linguistic information for multiple attribute group decision making. Group Decis. Negot. 2016, 25, 103–126. [Google Scholar] [CrossRef]
- Liu, W.H.; Liu, H.B.; Li, L.L. A multiple attribute group decision making method based on 2-dimension uncertain linguistic weighted Heronian mean aggregation operator. Int. J. Comput. Commun. Control 2017, 12, 254–264. [Google Scholar] [CrossRef]
- Xu, Z.S. A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 2004, 166, 19–30. [Google Scholar] [CrossRef]
- Xu, Z.S. A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis. Negot. 2006, 15, 593–604. [Google Scholar] [CrossRef]
- Martı´nez, L.; Da, R.; Herrera, F.; Herrera-Viedma, E.; Wang, P.P. Linguistic decision making: Tools and applications. Inf. Sci. 2009, 179, 2297–2298. [Google Scholar] [CrossRef]
- Merigo’, J.M.; Casanovas, M.; Martı’nez, L. Linguistic aggregation operators for linguistic decision making based on the Dempster-Shafer theory of evidence. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2010, 18, 287–304. [Google Scholar] [CrossRef]
- Pei, Z.; Shi, P. Fuzzy risk analysis based on linguistic aggregation operators. Int. J. Innov. Comput. Inf. Control 2011, 7, 7105–7117. [Google Scholar]
- Wang, J.Q.; Li, H.B. Multi-criteria decision-making method based on aggregation operators for intuitionistic linguistic fuzzy numbers. Control Decis. 2010, 25, 1571–1574. [Google Scholar]
- Du, Y.; Zuo, J. An extended TOPSIS method for the multiple attribute group decision making problems based on intuitionistic linguistic numbers. Sci. Res. Essays 2011, 19, 4125–4132. [Google Scholar]
- Chen, Z.C.; Liu, P.D.; Pei, Z. An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 2015, 8, 747–760. [Google Scholar] [CrossRef]
- Liu, P.D. Some generalized dependent aggregation operators with intuitionistic linguistic numbers and their application to group decision making. J. Comput. Syst. Sci. 2013, 79, 131–143. [Google Scholar] [CrossRef]
- Ju, Y.B.; Liu, X.Y.; Ju, D.W. Some new intuitionistic linguistic aggregation operators based on Maclaurin symmetric mean and their applications to multiple attribute group decision making. Soft Comput. 2015, 20, 4521–4548. [Google Scholar] [CrossRef]
- Yu, S.M.; Wang, J.; Wang, J.Q. An extended TODIM approach with intuitionistic linguistic numbers. Int. Trans. Oper. Res. 2016. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Peng, H.G.; Wang, J.; Wang, J.Q. An extended outranking approach for multi-criteria decision-making problems with linguistic intuitionistic fuzzy numbers. Appl. Soft Comput. 2017, 59, 462–474. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P. Some improved linguistic intuitionistic fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Inf. Technol. Decis. Mak. 2017, 16, 817–850. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wang, P.; Wang, J.; Zhang, H.Y.; Chen, X.H. Atanassov’s interval-valued intuitionistic linguistic multi-criteria group decision-making method based on trapezium cloud model. IEEE Trans. Fuzzy Syst. 2015, 23, 542–554. [Google Scholar] [CrossRef]
- Rodriguez, R.M.; Martinez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 2012, 20, 109–119. [Google Scholar] [CrossRef]
- Liu, H.B.; Rodrı’guez, R.M. A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multi-criteria decision making. Inf. Sci. 2014, 258, 220–238. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wu, J.T.; Wang, J.; Zhang, H.Y.; Chen, X.H. Interval valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 2014, 288, 55–72. [Google Scholar] [CrossRef]
- Meng, F.Y.; Chen, X.H.; Zhang, Q. Multi-attribute decision analysis under a linguistic hesitant fuzzy environment. Inf. Sci. 2014, 267, 287–305. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. Multi-criteria decision-making based on hesitant fuzzy linguistic term sets: An outranking approach. Knowl.-Based Syst. 2015, 86, 224–236. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wu, J.T.; Wang, J.; Zhang, H.Y.; Chen, X.H. Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers. Soft Comput. 2015, 20, 1621–1633. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.Q.; Zhang, H.Y. A likelihood-based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics outsourcing. Comput. Ind. Eng. 2016, 99, 287–299. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. Linguistic hesitant fuzzy multi-criteria decision-making method based on evidential reasoning. Int. J. Syst. Sci. 2016, 47, 314–327. [Google Scholar] [CrossRef]
- Tüysüz, F.; Şimşek, B. A hesitant fuzzy linguistic term sets-based AHP approach for analyzing the performance evaluation factors: An application to cargo sector. Complex Intell. Syst. 2017. [Google Scholar] [CrossRef]
- Gou, X.; Liao, H.C.; Xu, Z.S.; Herrera, F. Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: A case of study to evaluate the implementation status of haze controlling measures. Inf. Fusion 2017, 38, 22–34. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Li, X.E.; Wang, J.Q. Intuitionistic hesitant linguistic sets and their application in multi-criteria decision-making problems. Oper. Res. Int. J. 2016, 16, 131–160. [Google Scholar] [CrossRef]
- Faizi, S.; Rashid, T.; Zafar, S. An outranking method for multi-criteria group decision making using hesitant intuitionistic fuzzy linguistic term sets. J. Intell. Fuzzy Syst. 2017, 32, 2153–2164. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Smarandache, F. Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability; Sitech and Education Publishing: Craiova, Romania; Columbus, OH, USA, 2013. [Google Scholar]
- Smarandache, F. Introduction to Neutrosophic Statistics; Sitech and Education Publishing: Craiova, Romania; Columbus, OH, USA, 2014. [Google Scholar]
- Liang, R.X.; Wang, J.Q.; Zhang, H.Y. Evaluation of e-commerce websites: An integrated approach under a single-valued trapezoidal neutrosophic environment. Knowl.-Based Syst. 2017, in press. [Google Scholar] [CrossRef]
- Nie, R.X.; Wang, J.Q.; Zhang, H.Y. Solving solar-wind power station location problem using an extended WASPAS technique with Interval neutrosophic sets. Symmetry 2017, 9, 106. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.Y.; Wang, J.Q. Frank choquet bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2017. [Google Scholar] [CrossRef]
- Ye, J. Bidirectional projection method for multiple attribute group decision making with neutrosophic numbers. Neural Comput. Appl. 2017, 28, 1021–1029. [Google Scholar] [CrossRef]
- Ye, J. Multiple-attribute group decision-making method under a neutrosophic number environment. J. Intell. Syst. 2016, 25, 377–386. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, H.; Wang, J.Q. Linguistic neutrosophic sets and their application in multicriteria decision-making problems. Int. J. Uncertain. Quantif. 2017, 7, 135–154. [Google Scholar] [CrossRef]
- Luo, S.Z.; Cheng, P.F.; Wang, J.Q.; Huang, Y.J. Selecting project delivery systems based on simplified neutrosophic linguistic preference relations. Symmetry 2017, 9, 151. [Google Scholar] [CrossRef]
- Wang, J.Q.; Yang, Y.; Li, L. Multi-criteria decision-making method based on single valued neutrosophic linguistic Maclaurin symmetric mean operators. Neural Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Fang, Z.B.; Ye, J. Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry 2017, 9, 111. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. Cosine Similarity Measure Based Multi-attribute Decision-making with Trapezoidal Fuzzy Neutrosophic Numbers. Neutrosophic Sets Syst. 2014, 8, 47–57. [Google Scholar] [CrossRef]
- Mahmood, T.; Ye, J.; Khan, Q. Vector similarity measures for simplified neutrosophic hesitant fuzzy set and their applications. J. Inequal. Spec. Funct. 2016, 7, 176–194. [Google Scholar]
- Ye, J. Linguistic neutrosophic cubic numbers and their multiple attribute decision-making method. Information 2017, 8, 110. [Google Scholar] [CrossRef]
MAGDM Method | Cosine Measure Value (Score Function) | Ranking Order | The Best Alternative |
---|---|---|---|
Cω1LNNs (Dk, Hi) | 0.9009, 0.9158, 0.9126, 0.9397 | H4 > H2 > H3 > H1 | H4 |
Cω2LNNs (Dk, Hi) | 0.8611, 0.8832, 0.8807, 0.9241 | H4 > H2 > H3 > H1 | H4 |
LNNWAA Operator [48] | 0.7528, 0.7770, 0.7613, 0.8060 | H4 > H2 > H3 > H1 | H4 |
LNNWGA Operator [48] | 0.7397, 0.7747, 0.7513, 0.8035 | H4 > H2 > H3 > H1 | H4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Ye, J. Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making. Information 2017, 8, 117. https://doi.org/10.3390/info8040117
Shi L, Ye J. Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making. Information. 2017; 8(4):117. https://doi.org/10.3390/info8040117
Chicago/Turabian StyleShi, Lilian, and Jun Ye. 2017. "Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making" Information 8, no. 4: 117. https://doi.org/10.3390/info8040117
APA StyleShi, L., & Ye, J. (2017). Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making. Information, 8(4), 117. https://doi.org/10.3390/info8040117