On the Problem of the Existence of a Square Matrix U Such That UUT = −I over Zpm
Abstract
:1. Introduction
2. Preliminaries
- If , then there exists such U for all .
- If and , then there exists such U for all .
- If and , then no such U exists.
- If and , then no such U exists for all .
3. Nonexistence of a Matrix U Such That over for All
- If , then there exists such U for all .
- If , then there exists such U if and only if a is a multiple of four.
4. On the Problem of the Existence of a Matrix U Such That over , Where p Is an Odd Prime
- If , then there exists such U for all .
- If , then there exists such U if and only if a is even.
5. Examples
Acknowledgments
Conflicts of Interest
References
- Rains, E.; Sloane, N.J.A. Self-Dual Codes. In Handbook of Coding Theory; Pless, V.S., Huffman, W.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Conway, J.H.; Pless, V. On the enumeration of self-dual codes. J. Comb. Theory Ser. A 1980, 28, 26–53. [Google Scholar] [CrossRef]
- Huffman, W.C.; Pless, V.S. Fundamentals of Error-correcting Codes; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Grassl, M.; Gulliver, T.A. On circulant self-dual codes over small fields. Des. Codes Cryptogr. 2009, 52, 57–81. [Google Scholar] [CrossRef]
- Harada, M. The existence of a self-dual [70, 35, 12] code and formally self-dual codes. Finite Fields Appl. 1997, 3, 131–139. [Google Scholar] [CrossRef]
- Kim, J.-L. New extremal self-dual codes of lengths 36, 38, and 58. IEEE Trans. Inf. Theory 2001, 47, 386–393. [Google Scholar]
- Kim, J.-L.; Lee, Y. Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 2004, 105, 79–95. [Google Scholar] [CrossRef]
- Kim, J.-L.; Lee, Y. An Efficient Construction of Self Dual Codes. Bull. Korean Math. Soc. 2015, 52, 915–923. [Google Scholar] [CrossRef]
- Alfaro, R.; Dhul-Qarnayn, K. Constructing Self-Dual codes over q[u]/(ut). Des. Codes Cryptogr. 2015, 74, 453–465. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Kim, J.-L.; Kulosman, H.; Liu, H. Self-dual codes over commutative Frobenius rings. Finite Fields Appl. 2010, 16, 14–26. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Kim, J.-L.; Liu, H. Constructions of Self-dual Codes over Finite Commutative Chain Rings. Int. J. Inf. Codin. Theory 2010, 1, 171–190. [Google Scholar] [CrossRef]
- Han, S.; Lee, H.; Lee, Y. Construction of Self Dual Codes over 2 + u2. Bull. Korean Math. Soc. 2012, 49, 135–143. [Google Scholar] [CrossRef]
- Kim, J.-L.; Lee, Y. Construction of MDS Self-dual codes over Galois rings. Des. Codes Cryptogr. 2007, 45, 247–258. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y. Construction of self-dual codes over finite rings ℤpm. J. Comb. Theory Ser. A 2008, 115, 407–422. [Google Scholar] [CrossRef]
- Han, S. A method for costructing self-dual codes over ℤ2m. Des. Codes Cryptogr. 2015, 75, 253–262. [Google Scholar] [CrossRef]
- Massey, J.L. Orthogonal, antiorthogonal and self-orthogonal matrices and their codes. Commun. Codin. 1998, 2, 3. [Google Scholar]
- Massey, J.L. On Antiorthogonal Matrices and Their Codes. In Proceedings of the 1998 IEEE International Symposium on Information Theory (ISIT), Cambridge, MA, USA, 16–21 August 1998. [Google Scholar]
- Huffman, W.C. On the classification and enumeration of self-dual codes. Finite Fields Appl. 2005, 11, 451–490. [Google Scholar] [CrossRef]
- Burton, D.M. Elementary Number Theory, 6th ed.; McGraw-Hill International Edition; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symbolic Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
- Balmaceda, J.M.P.; Betty, R.A.L.; Nemenzo, F.R. Mass formula for self-dual codes over ℤp2. Discret. Math. 2017, 308, 2984–3002. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S. On the Problem of the Existence of a Square Matrix U Such That UUT = −I over Zpm. Information 2017, 8, 80. https://doi.org/10.3390/info8030080
Han S. On the Problem of the Existence of a Square Matrix U Such That UUT = −I over Zpm. Information. 2017; 8(3):80. https://doi.org/10.3390/info8030080
Chicago/Turabian StyleHan, Sunghyu. 2017. "On the Problem of the Existence of a Square Matrix U Such That UUT = −I over Zpm" Information 8, no. 3: 80. https://doi.org/10.3390/info8030080
APA StyleHan, S. (2017). On the Problem of the Existence of a Square Matrix U Such That UUT = −I over Zpm. Information, 8(3), 80. https://doi.org/10.3390/info8030080