A Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management
Abstract
:1. Introduction
- (1)
- Define some triangular intuitionistic fuzzy aggregation operators, that is, the triangular intuitionistic fuzzy weighted geometric averaging (TIFWGA) operator, ordered weighted geometric averaging (TIFOWGA) operator and the hybrid weighted geometric averaging (TIFHWGA) operator;
- (2)
- Develop a new generalized triangular intuitionistic fuzzy aggregation operator, that is, the generalized triangular intuitionistic fuzzy ordered weighted geometric averaging (GTIFOWGA) operator. This is mainly to allow for more attitudinal information to be expressed or used in accordance with the different DMs interests or preference;
- (3)
- Propose a simple and straightforward approach for solving MCDM problems when the performance ratings are expressed in triangular intuitionistic fuzzy numbers (TIFNs).
2. Preliminaries
2.1. Intuitionistic Fuzzy Set (IFS)
- 1.
- 2.
- 3.
- 4.
- 5.
- if and only if and for all
- 6.
- if and only if and for all
2.2. The Triangular Intuitionistic Fuzzy Number (TIFN)
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- .
- 1.
- 2.
- 3.
- ;
- 4.
- 5.
- 6.
3. Some Weighted Geometric Operators and the Generalized Ordered Weighted Geometric Operators of TIFNs
3.1. Some Weighted Geometric Aggregation Operators on TIFNs
3.2. The Generalized Ordered Geometric Operator of TIFNs
- For :Thus, for Equation (9) holds.
- For :Since, then:Thus, the result is true for .
- Suppose , then:For we then have:It confirms that the result is true for , and thus it holds for all of .Hence:The theorem is true for any number of TIFN, which completes the proof. ☐
3.3. Some Useful Properties of the GTIFOWGA Operator
4. Multi-Criteria Decision Making (MCDM) with the Generalized Geometric Operators for TIFNs
4.1. Algorithm of the Proposed Approach for Solving the MCDM Problems
4.2. Numerical Example
4.3. Comparison Analysis and Discussion
4.3.1. The Triangular Intuitionistic Fuzzy Aggregation Operator by Li [35]
4.3.2. The Extended VIKOR Method of TIFNs by Wan et al. [29]
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, L. The Extended VIKOR Method for Multiple Criteria Decision Making Problem Based on Neutrosophic Hesitant Fuzzy Set. Available online: http://fs.gallup.unm.edu/TheExtendedVIKORMethod.pdf (accessed on 3 May 2016).
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Deschrijver, G.; Kerre, E.E. On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision. Inf. Sci. 2007, 177, 1860–1866. [Google Scholar] [CrossRef]
- Despi, I.; Opris, D.; Yalcin, E. Generalised Atanassov Intuitionistic Fuzzy Sets. In Proceedings of the eKNOW 2013, The Fifth International Conference on Information, Process, and Knowledge Management, Nice, France, 24 February–1 March 2013; pp. 51–56. [Google Scholar]
- Marasini, D.; Quatto, P.; Ripamonti, E. Intuitionistic fuzzy sets in questionnaire analysis. Qual. Quant. 2016, 50, 767–790. [Google Scholar] [CrossRef]
- Li, D.-F. Decision and Game Theory in Management with Intuitionistic Fuzzy Sets; Springer: New York, NY, USA, 2014; Volume 308. [Google Scholar]
- Li, D.-F. Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 2005, 70, 73–85. [Google Scholar] [CrossRef]
- Xu, Z.; Liao, H. A survey of approaches to decision making with intuitionistic fuzzy preference relations. In Knowledge-Based Systems; Elsevier: Amsterdam, The Netherlands, 2015; Volume 80, pp. 131–142. [Google Scholar]
- Yu, D.; Liao, H. Visualization and quantitative research on intuitionistic fuzzy studies. J. Intel. Fuzzy Syst. 2016, 30, 3653–3663. [Google Scholar] [CrossRef]
- Liao, H.; Li, Z.; Zeng, X.J.; Liu, W. A Comparison of Distinct Consensus Measures for Group Decision Making with Intuitionistic Fuzzy Preference Relations. Int. J. Comput. Intel. Syst. 2017, 10, 456–469. [Google Scholar] [CrossRef]
- Lin, L.; Yuan, X.H.; Xia, Z.Q. Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets. J. Comput. Syst. Sci. 2007, 73, 84–88. [Google Scholar] [CrossRef]
- Aikhuele, D.O.; Turan, F.M. An Interval Fuzzy-Valued M-TOPSIS Model for Design Concept Selection. In Proceedings of the National Conference for Postgraduate Research (NCON-PGR) 2016-Knowledge Discovery for Wealth Creations, Pekan, Malaysia, 24–25 September 2016; pp. 374–384. [Google Scholar]
- Bai, Z. An Interval-Valued Intuitionistic Fuzzy TOPSIS Method Based on an Improved Score Function. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Aikhuele, D.O.; Turan, F.M. A modified exponential score function for troubleshooting an improved locally made Off-shore Patrol Boat engine. J. Mar. Eng. Technol. 2017. [Google Scholar] [CrossRef]
- Chen, S.M.; Chiou, C.H. A new method for multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques and evidential reasoning methodology. In Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China, 12–15 July 2015; Volume 1, pp. 403–409. [Google Scholar]
- Aikhuele, D.O.; Turan, F.B.M. Intuitionistic fuzzy-based model for failure detection. SpringerPlus 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Aikhuele, D.O.; Turan, F.B.M. An Improved Methodology for Multi-Criteria Evaluations in the Shipping Industry. Brodogradnja 2016, 67, 59–72. [Google Scholar] [CrossRef]
- Dong, J.; Yang, D.Y.; Wan, S.P. Trapezoidal intuitionistic fuzzy prioritized aggregation operators and application to multi-attribute decision making. Iran. J. Fuzzy Syst. 2015, 12, 1–32. [Google Scholar]
- Das, D. A Study on Ranking of Trapezoidal Intuitionistic Fuzzy Numbers. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2014, 6, 437–444. [Google Scholar]
- Tian, M.; Liu, J. Some Aggregation Operators with Interval-Valued Intuitionistic Trapezoidal Fuzzy Numbers and Their Application in Multiple Attribute Decision Making. Adv. Model. Optim. 2013, 15, 301–308. [Google Scholar]
- Wu, J.; Liu, Y. An approach for multiple attribute group decision making problems with interval-valued intuitionistic trapezoidal fuzzy numbers. Comput. Ind. Eng. 2013, 66, 311–324. [Google Scholar] [CrossRef]
- Garg, H. Generalized Pythagorean fuzzy Geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision-making process. Int. J. Intell. Syst. 2016. [Google Scholar] [CrossRef]
- Li, D.F. A note on “using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly”. Microelectron. Reliab. 2008, 48. [Google Scholar] [CrossRef]
- Robinson, J.P.; Poovarasan, V. A Robust MAGDM Method for Triangular Intuitionistic Fuzzy Sets. Int. J. Pure Appl. Math. 2015, 101, 753–762. [Google Scholar]
- Shu, M.-H.; Cheng, C.-H.; Chang, J.-R. Using Intuitionistic Fuzzy Sets for Fault-Tree Analysis on Printed Circuit Board Assembly. Microelectron. Reliab. 2006, 46, 2139–2148. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B. Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers. Sci. Iran. 2011, 18, 268–274. [Google Scholar] [CrossRef]
- Zhang, M.J.; Nan, J.X. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Iran. J. Fuzzy Syst. 2013, 10, 21–37. [Google Scholar]
- Wan, S.P.; Wang, Q.Y.; Dong, J.Y. The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers. Knowl. Based Syst. 2013, 52, 65–77. [Google Scholar] [CrossRef]
- Li, D.F.; Nan, J.X.; Zhang, M.J. A Ranking Method of Triangular Intuitionistic Fuzzy Numbers and Application to Decision Making. Int. J. Comput. Intell. Syst. 2010, 3, 522–530. [Google Scholar] [CrossRef]
- Wan, S.; Lin, L.-L.; Dong, J. MAGDM based on triangular Atanassov’s intuitionistic fuzzy information aggregation. Neural Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Liang, C.; Zhao, S.; Zhang, J. Aggregation Operators on Triangular Intuitionistic Fuzzy Numbers and Its Application to Multi-Criteria Decision Making Problems. Found. Comput. Decis. Sci. 2014, 3, 321–326. [Google Scholar] [CrossRef]
- Despic, O.; Simonovic, S.P. Aggregation operators for soft decision making in water resources. Fuzzy Sets Syst. 2000, 115, 11–33. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P. Method for aggregating triangular fuzzy intuitionistic fuzzy information and its application to decision making. Technol. Econ. Dev. Econ. 2010, 16, 280–290. [Google Scholar] [CrossRef]
- Li, D.-F. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Comput. Math. Appl. 2010, 60, 1557–1570. [Google Scholar] [CrossRef]
- Xu, Z.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Tan, C. Generalized intuitionistic fuzzy geometric aggregation operator and its application to multi-criteria group decision making. Soft Comput. 2011, 15, 867–876. [Google Scholar] [CrossRef]
- Qi, X.W.; Liang, C.Y.; Zhang, J. Some generalized dependent aggregation operators with interval-valued intuitionistic fuzzy information and their application to exploitation investment evaluation. J. Appl. Math. 2013, 2013, 49–52. [Google Scholar] [CrossRef]
Linguistic Terms | TIFNs |
---|---|
Low (L) | ([0.10, 0.90, 0.2]; 0.4, 0.4) |
Medium (M) | ([0.20, 0.80, 0.2]; 0.4, 0.1) |
Good (G) | ([0.30, 0.60, 0.1]; 0.4, 0.3) |
Very Good (VG) | ([0.60, 0.30, 0.1]; 0.5, 0.2) |
High (H) | ([0.80, 0.10, 0.1]; 0.6, 0.1) |
Very High (VH) | ([0.90, 0.10, 0.2]; 0.7, 0.1) |
Ai | C1 | C2 | C3 | C4 |
---|---|---|---|---|
A1 | ([0.28, 0.46, 0.65]; 0.7, 0.2) | ([0.57, 0.76, 0.96]; 0.6, 0.3) | ([0.47, 0.62, 0.77]; 0.6, 0.2) | ([0.59, 0.80, 1.00]; 0.6, 0.3) |
A2 | ([0.52, 0.62, 0.71]; 0.6, 0.3) | ([0.74, 0.87, 1.00]; 0.8, 0.1) | ([0.48, 0.74, 1.00]; 0.8, 0.2) | ([0.47, 0.57, 0.67]; 0.7, 0.3) |
A3 | ([0.40, 0.54, 0.68]; 0.6, 0.4) | ([0.59, 0.65, 0.72]; 0.6, 0.3) | ([0.46, 0.68, 0.90]; 0.5, 0.5) | ([0.55, 0.68, 0.82]; 0.8, 0.1) |
A4 | ([0.54, 0.77, 1.00]; 0.8, 0.2) | ([0.60, 0.76, 0.92]; 0.6, 0.2) | ([0.37, 0.56, 0.74]; 0.8, 0.2) | ([0.73, 0.80, 0.86]; 0.7, 0.1) |
Ai | ||||
A1 | ([0.486354, 0.66996, 0.853457]; 0.614035, 0.25466) | ([0.030397, 0.041872, 0.053341]; 0.925073, 0.12733) | ([0.006004, 0.008271, 0.010537]; 0.980486, 0.084887) | ([0.0019, 0.002617, 0.003334]; 0.994251, 0.063665) |
A2 | ([0.538137, 0.69749, 0.84916]; 0.738094, 0.222068) | ([0.033634, 0.043593, 0.053073]; 0.963488, 0.111034) | ([0.006644, 0.008611, 0.010483]; 0.992694, 0.074023) | ([0.002102, 0.002725, 0.003317]; 0.998236, 0.055517) |
A3 | ([0.503972, 0.64952, 0.795124]; 0.613474, 0.341045) | ([0.031498, 0.040595, 0.049695]; 0.920472, 0.170523) | ([0.006222, 0.008019, 0.009816]; 0.977019, 0.113682) | ([0.001969, 0.002537, 0.003106]; 0.992254, 0.085261) |
A4 | ([0.534505, 0.700587, 0.85263]; 0.717162, 0.173177) | ([0.033407, 0.043787, 0.053289]; 0.95734, 0.086588) | ([0.006599, 0.008649, 0.010526]; 0.990805, 0.057726) | ([0.002088, 0.002737, 0.003331]; 0.997633, 0.043294) |
A1 | ([0.000778, 0.001072, 0.001366]; 0.998186, 0.050932) | ([7.41 × 10−5, 0.000102, 0.00013]; 0.999975, 0.028296) | ([4.86 × 10−5, 6.7 × 10−5, 8.53 × 10−5]; 0.999991, 0.025466) | ([7.78 × 10−8, 1.07 × 10−7, 1.37 × 10−7]; 1.0000, 0.005093) |
A2 | ([0.000861, 0.001116, 0.001359]; 0.999519, 0.044414) | ([8.2 × 10−5, 0.000106, 0.000129]; 0.999995, 0.024674) | ([5.38 × 10−5, 6.97 × 10−5, 8.49 × 10−5]; 0.999998, 0.022207) | ([8.61 × 10−8, 1.12 × 10−7, 1.36 × 10−7]; 1.0000, 0.004441) |
A3 | ([0.000806, 0.001039, 0.001272]; 0.997147, 0.068209) | ([7.68 × 10−5, 9.9 × 10−5, 0.000121]; 0.999919, 0.037894) | ([5.04 × 10−5, 6.5 × 10−5, 7.95 × 10−5]; 0.999965, 0.034105) | ([8.06 × 10−8, 1.04 × 10−7, 1.27 × 10−7]; 1.0000, 0.006821) |
A4 | ([0.000855, 0.001121, 0.001364]; 0.99932, 0.034635) | ([8.15 × 10−5, 0.000107, 0.00013]; 0.999992, 0.019242) | ([5.35 × 10−5, 7.01 × 10−5, 8.53 × 10−5]; 0.999997, 0.017318) | ([8.55 × 10−8, 1.12 × 10−7, 1.36 × 10−7]; 1.0000, 0.003464) |
Ranking | Best Design Alternative | |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
9 | ||
10 | ||
20 | ||
50 |
Ranking | Best Design Alternative | |
---|---|---|
0.1 | ||
0.2 | ||
0.3 | ||
0.4 | ||
0.5 | ||
0.6 | ||
0.7 | ||
0.8 | ||
0.9 | ||
1.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aikhuele, D.O.; Odofin, S. A Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management. Information 2017, 8, 78. https://doi.org/10.3390/info8030078
Aikhuele DO, Odofin S. A Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management. Information. 2017; 8(3):78. https://doi.org/10.3390/info8030078
Chicago/Turabian StyleAikhuele, Daniel O., and Sarah Odofin. 2017. "A Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management" Information 8, no. 3: 78. https://doi.org/10.3390/info8030078
APA StyleAikhuele, D. O., & Odofin, S. (2017). A Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management. Information, 8(3), 78. https://doi.org/10.3390/info8030078