A Minimum-Entropy Based Residual Range Cell Migration Correction for Bistatic Forward-Looking SAR
Abstract
:1. Introduction
2. Problem Formulation
Signal Model of BFSAR
3. Residual RCM Correction
3.1. Minimum-Entropy Estimation
3.2. Coordinate Descent
3.3. Analytical Solution
4. Numerical Results
Parameter | Value |
---|---|
Carrier frequency | 10 GHz |
Band width | 40 MHz |
Synthetic aperture time | 0.75 s |
Nominal Radar platform velocity | 120 m/s |
Pulse repetition frequency | 600 Hz |
Coordinates of transmitter | (-6000,0,8000) m |
Coordinates of receiver | (0,-6000,8000) m |
Coordinates of scene center | (0,0,0) m |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Wu, J.; Yang, J.; Yang, H.; Huang, Y. Optimal geometry configuration of bistatic forward-looking SAR. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), Taipei, Taiwan, 19–24 April 2009; pp. 1117–1120.
- Balke, J. Field test of bistatic forward-looking synthetic aperture radar. In Proceedings of the 2005 IEEE International Radar Conference, Arlington, VA, USA, 9–12 May 2005; pp. 424–429.
- Shin, H.-S.; Lim, J.-T. Omega-k algorithm for airborne spatial invariant bistatic spotlight SAR imaging. IEEE Trans. Geosci. Remote Sens. 2009, 47, 238–250. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Huang, Y.; Yang, H.; Wang, H. Bistatic forward-looking SAR: Theory and challenges. In Proceedings of the 2009 IEEE Radar Conference, Pasadena, CA, USA, 4–8 May 2009; pp. 1–4.
- Qiu, X.; Hu, D.; Ding, C. Some reflections on bistatic SAR of forward-looking configuration. Geosci. Remote Sens. Lett. IEEE 2008, 5, 735–739. [Google Scholar]
- Shin, H.S.; Lim, J.T. Omega-k algorithm for airborne forward-looking bistatic spotlight SAR imaging. IEEE Geosci. Remote Sens. Lett. 2009, 6, 312–316. [Google Scholar] [CrossRef]
- Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V., Jr. Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 827–835. [Google Scholar] [CrossRef]
- Lu, Y.; Ng, W.; Yeo, T.; Zhang, C. Autoregressive spectral estimation for SAR map-drift autofocusing. In Proceedings of the APMC ’97, 1997 Asia-Pacific Microwave Conference Proceedings, Hong Kong, China, 2–5 December 1997; Volume 1, pp. 61–64.
- Calloway, T.M.; Donohoe, G.W. Subaperture autofocus for synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 617–621. [Google Scholar] [CrossRef]
- Kragh, T.J. Monotonic iterative algorithm for minimum-entropy autofocus. In Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop, Lexington, MA, USA, 6–7 June 2006.
- Morrison, R.L.; Do, M.N.; Munson, D.C. SAR image autofocus by sharpness optimization: A theoretical study. IEEE Trans. Image Process. 2007, 16, 2309–2321. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X. SAR minimum-entropy autofocus using an adaptive-order polynomial model. IEEE Geosci. Remote Sens. Lett. 2006, 3, 512–516. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, R.; Li, F. SAR image autofocus utilizing minimum-entropy criterion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1552–1556. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Huang, Y.; Yang, H.; Kong, L. Spatial variance of bistatic sar with one fixed station. IEICE Trans. 2012, 95, 3270–3278. [Google Scholar] [CrossRef]
- Garza, G.; Qiao, Z. Resolution analysis of bistatic SAR. Proc. SPIE 2011, 8021, 361–372. [Google Scholar]
- Doerry, A.W. Autofocus Correction of Excessive Migration in Synthetic Aperture Radar Images; United States Department of Energy: Washington, DC, USA, 2004.
- González-Partida, J.-T.; Almorox-González, P.; Burgos-García, M.; Dorta-Naranjo, B.-P. SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors 2008, 8, 3384–3405. [Google Scholar] [CrossRef]
- Wang, J.; Kasilingam, D. Global range alignment for ISAR. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 351–357. [Google Scholar] [CrossRef]
- Li, W.; Yang, J.; Huang, Y.; Kong, L.; Wu, J. An improved radon-transform-based scheme of doppler centroid estimation for bistatic forward-looking SAR. IEEE Geosci. Remote Sens. Lett. 2011, 8, 379–383. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, Y.; Yang, J.; Yang, H.; Liu, Q.H. Focusing bistatic forward-looking SAR with stationary transmitter based on keystone transform and nonlinear chirp scaling. IEEE Geosci. Remote Sens. Lett. 2014, 11, 148–152. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, Y.; Pu, W.; Chen, G.; Huang, Y.; Yang, J. A Minimum-Entropy Based Residual Range Cell Migration Correction for Bistatic Forward-Looking SAR. Information 2016, 7, 8. https://doi.org/10.3390/info7010008
Zha Y, Pu W, Chen G, Huang Y, Yang J. A Minimum-Entropy Based Residual Range Cell Migration Correction for Bistatic Forward-Looking SAR. Information. 2016; 7(1):8. https://doi.org/10.3390/info7010008
Chicago/Turabian StyleZha, Yuebo, Wei Pu, Gao Chen, Yulin Huang, and Jianyu Yang. 2016. "A Minimum-Entropy Based Residual Range Cell Migration Correction for Bistatic Forward-Looking SAR" Information 7, no. 1: 8. https://doi.org/10.3390/info7010008
APA StyleZha, Y., Pu, W., Chen, G., Huang, Y., & Yang, J. (2016). A Minimum-Entropy Based Residual Range Cell Migration Correction for Bistatic Forward-Looking SAR. Information, 7(1), 8. https://doi.org/10.3390/info7010008