Predicting and Preventing School Dropout with Business Intelligence: Insights from a Systematic Review
Abstract
:1. Introduction
Business Intelligence in the Educational Sector
- Analyze Student Data: Evaluate academic performance, attendance, and progression metrics to proactively identify students at risk, enabling targeted instructional and support interventions.
- Monitor Institutional Performance: Track strategic indicators, including graduation rates, student satisfaction, and employment outcomes, to pinpoint strengths and weaknesses and develop evidence-based improvement strategies.
- Personalize Learning Experiences: Tailor educational content and approaches based on students’ learning patterns, preferences, and challenges, thereby enhancing educational effectiveness and student engagement.
- Optimize Resource Utilization: Analyze the allocation and effectiveness of educational resources such as staff, materials, and technology to maximize educational impact and institutional efficiency.
- Evaluate Educational Programs: Assess program performance comprehensively, identifying successful initiatives and areas needing improvement, thus guiding informed decisions about curricular and operational adjustments.
2. Materials and Methods
2.1. Planning
- Has business intelligence allowed for the prediction and prevention of school dropouts?
- What are the methodologies and tools for business intelligence that educational institutions have used in their management processes?
- What have been the main contributions of business intelligence to the issue of school dropout?
Information Retrieval
2.2. Data Selection
2.3. Information Extraction
3. Results
3.1. Global Distribution of Research
3.2. Temporal Distribution of Research
3.3. Data Sources in Dropout Prediction
3.4. Machine Learning Methods Used
3.5. Software Tools and Platforms
3.6. Types of Research Approaches
3.7. Application Objectives of the Studies
3.8. Challenges Reported
3.8.1. Data Privacy and Security
3.8.2. Data Quality and Integration
3.8.3. Model Interpretability
3.8.4. Resource Limitations and Expertise
3.8.5. Ethical Concerns and Bias
4. Discussion
4.1. Global and Temporal Trends
4.2. Data Sources and Methods
4.3. Research Approaches and Application Objectives
4.4. Challenges and Limitations
4.5. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbina-Nájera, A.B.; Camino-Hampshire, J.C.; Barbosa, R.C. Deserción escolar universitaria: Patrones para prevenirla aplicando minería de datos educativa. RELIEVE—Rev. Electrón. Investig. Eval. Educativa 2020, 26. [Google Scholar] [CrossRef]
- Rochin Berumen, F.L. Deserción escolar en la educación superior en México: Revisión de literatura. RIDE—Rev. Iberoam. Para Investig. Desarro. Educativo 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Curto Díaz, J. Introduccion al Business Intelligence; Editorial UOC: Barcelona, Spain, 2017. [Google Scholar]
- Ayala, J.; Ortiz, J.; Guevara, C.; Maya, E. Herramientas de Business Intelligence (BI) modernas, basadas en memoria y con lógica asociativa. Revistapuce 2018, 106. [Google Scholar] [CrossRef]
- Ouriniche, N.; Benabbou, Z.; Abbar, H. Global Performance Management Using the Sustainability Balanced Scorecard and Business Intelligence—A Case Study. Proc. Eng. 2022, 4, 313–326. [Google Scholar] [CrossRef]
- Cano, J.L. Business Intelligence: Competir con Información; Fundación Banesto: Madrid, Spain, 2007. [Google Scholar]
- Pascal, G.; Servetto, D.; Mirasson, U.L.; Luna, Y. Aplicación de Business Intelligence para la toma de decisiones en Instituciones Universitarias. Implementación de Boletines Estadísticos en la Universidad Nacional de Lomas de Zamora (UNLZ). Rev. Electrón. Sobre Tecnol. Educ. Sociedad 2017, 4, 7. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Grijalva, P.K.; Cornejo, G.E.; Gómez, R.R.; Real, K.P.; Fernández, A. Herramientas colaborativas para revisiones sistemáticas. Rev. Espac. 2019, 40, 9. [Google Scholar]
- Uldall, J.S.; Rojas, C.G. An Application of Machine Learning in Public Policy: Early Warning Prediction of School Dropout in the Chilean Public Education System. Multidiscip. Bus. Rev. 2022, 15, 20–35. [Google Scholar] [CrossRef]
- Christie, S.T.; Jarratt, D.C.; Olson, L.A.; Taijala, T.T. Machine-Learned School Dropout Early Warning at Scale. In Proceedings of the Educational Data Mining, Montreal, QC, Canada, 2–5 July 2019. [Google Scholar]
- Bird, K. Predictive Analytics in Higher Education: The Promises and Challenges of Using Machine Learning to Improve Student Success. AIR Prof. File 2023, 2023, 11–18. [Google Scholar] [CrossRef]
- Ryan, L.; Snow, N. Supporting Student Success with Intuitive, Approachable Data Visualization. In Supporting the Success of Adult and Online Students Proven Practices in Higher Education; CreateSpace Independent Publishing: San Bernardino, CA, USA, 2016. [Google Scholar]
- Pinkus, L. Using Early-Warning Data to Improve Graduation Rates: Closing Cracks in the Education System; Alliance for Excellent Education: Washington, DC, USA, 2009. [Google Scholar]
- Aulck, L.; Velagapudi, N.; Blumenstock, J.E.; West, J.D. Predicting Student Dropout in Higher Education. arXiv 2016, arXiv:1606.06364. [Google Scholar]
- Kang, K.; Wang, S. Analyze and Predict Student Dropout from Online Programs. In Proceedings of the Conference on Educational Data Mining, DeKalb, IL, USA, 23–25 March 2018; pp. 6–12. [Google Scholar] [CrossRef]
- Essa, A.; Ayad, H. Improving student success using predictive models and data visualisations. Res. Learn. Technol. 2012, 20, 58–70. [Google Scholar] [CrossRef]
- Matz, S.; Peters, H.; Stachl, C. Using machine learning to predict student retention from socio-demographic characteristics and app-based engagement metrics. Dent. Sci. Rep. 2023, 13, 5705. [Google Scholar] [CrossRef]
- Yu, R.; Li, Q.; Fischer, C.; Doroudi, S.; Xu, D. Towards Accurate and Fair Prediction of College Success: Evaluating Different Sources of Student Data. In Proceedings of the Educational Data Mining Conference, Virtual Event, 10–13 July 2020; pp. 292–301. [Google Scholar]
- Yu, R.; Lee, H.; Kizilcec, R.F. Should College Dropout Prediction Models Include Protected Attributes. In Proceedings of the Learning at Scale Conference, Virtual, 22–25 June 2021; pp. 91–100. [Google Scholar] [CrossRef]
- Zhao, Y.; Otteson, A. AI-Driven Strategies for Reducing Student Withdrawal—A Study of EMU Student Stopout. arXiv 2024, arXiv:2408.02598. [Google Scholar] [CrossRef]
- Jain, H. Predicting college dropout likelihood based on high school and college data: A machine learning approach. In Proceedings of the International Conference on Science & Technology, Bali, Indonesia, 18–19 July 2024. [Google Scholar] [CrossRef]
- Mínguez-Martínez, A.L.; Sood, K.; Mahto, R. Early Detection of At-Risk Students Using Machine Learning. arXiv 2024, arXiv:2412.09483. [Google Scholar]
- Bukralia, R.; Deokar, A.V.; Sarnikar, S. Using Academic Analytics to Predict Dropout Risk in E-Learning Courses. In Reshaping Society Through Analytics, Collaboration, and Decision Support; Iyer, L.S., Power, D.J., Eds.; Annals of Information Systems; Springer: Cham, Switzerland, 2015; Volume 18, pp. 67–93. [Google Scholar] [CrossRef]
- Cambruzzi, W.; Rigo, S.; Barbosa, J.L.V. Dropout Prediction and Reduction in Distance Education Courses with the Learning Analytics Multitrail Approach. J. Univers. Comput. Sci. 2015, 21, 23–47. [Google Scholar] [CrossRef]
- da, S. Freitas, F.A.; Vasconcelos, F.F.X.; Peixoto, S.A.; Hassan, M.M.; Dewan, M.A.A.; de Albuquerque, V.H.C.; Filho, P.P.R. IoT System for School Dropout Prediction Using Machine Learning Techniques Based on Socioeconomic Data. Electronics 2020, 9, 1613. [Google Scholar] [CrossRef]
- Barthès, J.P.A. An explainable machine learning approach for student dropout prediction. Expert Syst. Appl. 2023, 233, 120933. [Google Scholar] [CrossRef]
- Flores, V.; Heras, S.; Julián, V. Comparison of Predictive Models with Balanced Classes for the Forecast of Student Dropout in Higher Education. In Practical Applications of Agents and Multi-Agent Systems; Springer: Cham, Switzerland, 2021; pp. 139–152. [Google Scholar] [CrossRef]
- Gonzalez-Nucamendi, A.; Noguez, J.; Neri, L.; Robledo-Rella, V.; García-Castelán, R.M.G.; Escobar-Castillejos, D. Learning Analytics to Determine Profile Dimensions of Students Associated with their Academic Performance. Appl. Sci. 2022, 12, 10560. [Google Scholar] [CrossRef]
- Melo, E.C.; de Souza, F.S.H. Improving the prediction of school dropout with the support of the semi-supervised learning approach. iSys 2023, 16, 10:1–10:26. [Google Scholar] [CrossRef]
- Dávila, G.; Haro, J.; González, A.; Ruiz-Vivanco, O.; Guamán, D. Student Dropout Prediction in High Education, Using Machine Learning and Deep Learning Models: Case of Ecuadorian University. In Proceedings of the 2023 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 13–15 December 2023. [Google Scholar] [CrossRef]
- Fernandes, T.D.S.; Ramos, G.N. Generating and Understanding Predictive Models for Student Attrition in Public Higher Education. In Proceedings of the IEEE Frontiers in Education Conference, College Station, TX, USA, 18–21 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Kalegele, K. Enabling Proactive Management of School Dropouts Using Neural Network. J. Softw. Eng. Appl. 2020, 13, 245–257. [Google Scholar] [CrossRef]
- Baneres, D.; Rodríguez-González, M.E.; Guerrero-Roldán, A.E. A Real Time Predictive Model for Identifying Course Dropout in Online Higher Education. IEEE Trans. Learn. Technol. 2023, 16, 484–499. [Google Scholar] [CrossRef]
- Sayed, M. Student Progression and Dropout Rates Using Convolutional Neural Network: A Case Study of the Arab Open University. J. Adv. Comput. Intell. Intell. Inform. 2024, 28, 668–678. [Google Scholar] [CrossRef]
- do Carmo Nicoletti, M.; de Oliveira, O.L. A Machine Learning-Based Computational System Proposal Aiming at Higher Education Dropout Prediction. High. Educ. Stud. 2020, 10, 12–24. [Google Scholar] [CrossRef]
- Kim, S.; Yoo, E.; Kim, S. Why Do Students Drop Out? University Dropout Prediction and Associated Factor Analysis Using Machine Learning Techniques. arXiv 2023, arXiv:2310.10987. [Google Scholar] [CrossRef]
- Silva, J.; Matos, L.F.A.; Mosquera, C.M.; Mercado, C.V.; González, R.B.; Llinas, N.O.; Lezama, O.B.P. Prediction of academic dropout in university students using data mining: Engineering case. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 495–500. [Google Scholar] [CrossRef]
- Manrique, R.; Nunes, B.P.; Marino, O.; Casanova, M.A.; Nurmikko-Fuller, T. An Analysis of Student Representation, Representative Features and Classification Algorithms to Predict Degree Dropout. In Proceedings of the Learning Analytics and Knowledge Conference, Tempe, AZ, USA, 4–8 March 2019; pp. 401–410. [Google Scholar] [CrossRef]
- Beltrame, W.A.R.; Gonçalves, O.L. Socioeconomic Data Mining and Student Dropout: Analyzing a Higher Education Course in Brazil. Int. J. Innov. Educ. Res. 2020, 8, 505–518. [Google Scholar] [CrossRef]
- Böttcher, A.; Thurner, V.; Hafner, T. Applying Data Analysis to Identify Early Indicators for Potential Risk of Dropout in CS Students. In Proceedings of the Global Engineering Education Conference, Porto, Portugal, 27–30 April 2020; pp. 827–836. [Google Scholar] [CrossRef]
- Hegde, V.; Prageeth, P.P. Higher education student dropout prediction and analysis through educational data mining. In Proceedings of the International Conference on Information and Communication Systems (ICISC), Coimbatore, India, 19–20 January 2018. [Google Scholar] [CrossRef]
- Aguirre, C.E.; Pérez, J.C. Predictive data analysis techniques applied to dropping out of university studies. In Proceedings of the Conference on Latin American Computing, Loja, Ecuador, 19–23 October 2020; pp. 512–521. [Google Scholar] [CrossRef]
- Martinho, V.R.C.; Nunes, C.; Minussi, C.R. Prediction of School Dropout Risk Group Using Neural Network Fuzzy ARTMAP. In Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, Krakow, Poland, 8–11 September 2013; pp. 111–114. [Google Scholar]
- Palacios, C.A.; Reyes-Suarez, J.A.; Bearzotti, L.; Leiva, V.; Marchant, C. Knowledge Discovery for Higher Education Student Retention Based on Data Mining: Machine Learning Algorithms and Case Study in Chile. Entropy 2021, 23, 485. [Google Scholar] [CrossRef]
- Pecuchova, J.; Drlík, M. Enhancing the Early Student Dropout Prediction Model Through Clustering Analysis of Students’ Digital Traces. IEEE Access 2024, 12, 159336–159367. [Google Scholar] [CrossRef]
- Poellhuber, L.V.; Poellhuber, B.; Desmarais, M.C.; Léger, C.; Roy, N.; Vu, M.M.C. Cluster-Based Performance of Student Dropout Prediction as a Solution for Large Scale Models in a Moodle LMS. In Proceedings of the International Conference on Learning Analytics and Knowledge, Arlington, TX, USA, 13–17 March 2023. [Google Scholar] [CrossRef]
- Kok, C.L.; Ho, C.K.; Chen, L.; Koh, Y.Y.; Tian, B. A Novel Predictive Modeling for Student Attrition Utilizing Machine Learning and Sustainable Big Data Analytics. Appl. Sci. 2024, 14, 9633. [Google Scholar] [CrossRef]
- Orong, M.Y.; Caroro, R.A.; Durias, G.D.; Cabrera, J.A.; Lonzon, H.A.; Ricalde, G.T. A Predictive Analytics Approach in Determining the Predictors of Student Attrition in the Higher Education Institutions in the Philippines. In Proceedings of the International Conference on Software Engineering and Information Management, Sydney, NSW, Australia, 12–15 January 2020; pp. 222–225. [Google Scholar] [CrossRef]
- Pérez, P.N.M.; C, J.R.A.; Zamora, A.R.R. Predictive Model Design applying Data Mining to identify causes of Dropout in University Students. Int. J. Sci. Technol. Soc. 2019, 7, 11–39. [Google Scholar]
- Patino-Rodriguez, C.E. ADHE: A Tool to Characterize Higher Education Dropout Phenomenon. Rev. Fac. Ing.-Univ. Antioq. 2023, 111, 64–75. [Google Scholar] [CrossRef]
- Gutierrez-Pachas, D.A.; Zanabria, G.G.; Cuadros-Vargas, E.; Chavez, G.C.; Gomez-Nieto, E. Supporting Decision-Making Process on Higher Education Dropout by Analyzing Academic, Socioeconomic, and Equity Factors through Machine Learning and Survival Analysis Methods in the Latin American Context. Educ. Sci. 2023, 13, 154. [Google Scholar] [CrossRef]
- Vidal, J.; Gilar-Corbi, R.; Pozo-Rico, T.; Castejón, J.L.; Sánchez-Almeida, T. Predictors of University Attrition: Looking for an Equitable and Sustainable Higher Education. Sustainability 2022, 14, 10994. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Govea, J.; Revelo-Tapia, S. Improving Student Retention in Institutions of Higher Education through Machine Learning: A Sustainable Approach. Sustainability 2023, 15, 14512. [Google Scholar] [CrossRef]
- Gonzalez-Nucamendi, A.; Noguez, J.; Neri, L.; Robledo-Rella, V.; García-Castelán, R.M.G. Predictive analytics study to determine undergraduate students at risk of dropout. Front. Educ. 2023, 8, 1244686. [Google Scholar] [CrossRef]
- Núñez, A.; del Carmen Santiago Díaz, M.; Vázquez, A.C.Z.; Marcial, J.P.; Linarès, G. Early Detection of Students at High Risk of Academic Failure using Artificial Intelligence. Int. J. Comb. Optim. Probl. Inform. 2024, 15, 155–160. [Google Scholar] [CrossRef]
- Su, Z.; Liu, Y.; Zhang, X. Preventing Dropouts and Promoting Student Success: The Role of Predictive Analytics. In Proceedings of the 2nd International Conference on Computer Application Technology (CCAT 2023), Guiyang, China, 15–17 September 2023; pp. 282–286. [Google Scholar] [CrossRef]
- Heredia-Jiménez, V.; Jimenez, A.; Ortiz-Rojas, M.; Marín, J.I.; Moreno-Marcos, P.M.; Muñoz-Merino, P.J.; Kloos, C.D. An Early Warning Dropout Model in Higher Education Degree Programs: A Case Study in Ecuador. In Proceedings of the Workshop on Adoption, Adaptation and Pilots of Learning Analytics in Under-represented Regions (LAUR 2020), online, 14–15 September 2020; Volume 2704 of CEURWorkshop Proceedings. pp. 58–67. [Google Scholar]
- Núñez-Naranjo, A.F.; Ayala-Chauvin, M.; Riba-Sanmartí, G. Prediction of University Dropout Using Machine Learning. In Proceedings of the International Conference on Information Technology and Systems (ICITS 2021), Universidad Estatal Península de Santa Elena, Libertad, Ecuador, 4–6 February 2021; Advances in Intelligent Systems and Computing. Springer: Cham, Switzerland, 2021; Volume 1330, pp. 396–406. [Google Scholar] [CrossRef]
- Santacoloma, G.D. Predictive Model to Identify College Students with High Dropout Rates. Rev. Electron. Investig. Educ. 2023, 25, 1–10. [Google Scholar] [CrossRef]
- Guarda, T. Higher Education Students Dropout Prediction. In Proceedings of the 8th International Conference on Data Mining and Big Data (DMBD 2023), Sanya, China, 9–12 December 2023; Communications in Computer and Information Science. Springer: Singapore, 2023; Volume 328, pp. 121–128. [Google Scholar] [CrossRef]
- Khan, M.A.; Khojah, M.; Vivek. Artificial Intelligence and Big Data: The Advent of New Pedagogy in the Adaptive E-Learning System in the Higher Educational Institutions of Saudi Arabia. Educ. Res. Int. 2022, 2022, 1263555. [Google Scholar] [CrossRef]
- Khan, I.M.; Khan, I.M.; Ahmad, A.R.; Jabeur, N.; Mahdi, M.N. An Artificial Intelligence Approach to Monitor Student Performance and Devise Preventive Measures. Smart Learn. Environ. 2021, 8, 17. [Google Scholar] [CrossRef]
- Alfahid, A. Algorithmic Prediction of Students On-Time Graduation from the University. TEM J. 2024, 13, 692–698. [Google Scholar] [CrossRef]
- Alturki, S.; Alturki, N.M. Using Educational Data Mining to Predict Students’ Academic Performance for Applying Early Interventions. J. Inf. Technol. Educ. Innov. Pract. 2021, 20, 121–137. [Google Scholar] [CrossRef]
- Brdesee, H.; Alsaggaf, W.; Aljohani, N.R.; Hassan, S.U. Predictive Model Using a Machine Learning Approach for Enhancing the Retention Rate of Students At-Risk. Int. J. Semant. Web Inf. Syst. 2022, 18, 1–21. [Google Scholar] [CrossRef]
- Awedh, M.; Mueen, A. Early Identification of Vulnerable Students with Machine Learning Algorithms. WSEAS Trans. Inf. Sci. Appl. 2025, 22, 166–188. [Google Scholar] [CrossRef]
- Priya V, G.; Eliyas, S.; Kumar M, S. Detecting and Predicting Learner’s Dropout Using KNN Algorithm. In Proceedings of the 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, Raigarh, India, 5–7 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Deb, S.; Sammy, M.S.R.; Tusher, A.N.; Sakib, M.R.S.; Hasan, M.H.; Aunik, A.I. Predicting Student Dropout: A Machine Learning Approach. In Proceedings of the 15th International Conference on Computing, Communication and Networking Technologies (ICCCNT 2024), IIT Mandi (Kamand), Himachal Pradesh, India, 24–28 June 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Revathy, M.; Kamalakkannan, S. Collaborative learning for improving intellectual skills of dropout students using datamining techniques. In Proceedings of the International Conference on Artificial Intelligence, Coimbatore, India, 25–27 March 2021. [Google Scholar] [CrossRef]
- Gupta, K.; Gupta, K.; Dwivedi, P.; Chaudhry, M. Binary Classification of Students’ Dropout Behaviour in Universities using Machine Learning Algorithms. In Proceedings of the Conference, New Delhi, India, 28 February–1 March 2024; pp. 709–714. [Google Scholar] [CrossRef]
- Sharma, M.; Yadav, M.L. Predicting Students’ Drop-Out Rate Using Machine Learning Models: A Comparative Study. In Proceedings of the International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 11–12 August 2022; pp. 1166–1171. [Google Scholar] [CrossRef]
- Patel, D.D.; Savaj, K.; Malani, P.; Patel, J.; Trivedi, H. Unlocking Enigmatic Pathways: Empowering Student Dropout Analysis with Machine Learning and Energizing Holistic Investigation. In Proceedings of the 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), Pune, India, 5–7 April 2024. [Google Scholar] [CrossRef]
- Dongre, P.G.G. Predicting Student Dropout Rates in Higher Education: A Comparative Study of Machine Learning Algorithms. Indian Sci. J. Res. Eng. Manag. 2024. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Z.Q.; Cao, J.; Yang, Y.; Poon, K.C.F.; Lai, D. Modeling Behavior Change for Multi-model At-Risk Students Early Prediction. In Proceedings of the 2024 International Symposium on Educational Technology (ISET), Macau, Macao, 29 July–1 August 2024; pp. 54–58. [Google Scholar] [CrossRef]
- Cheng, Y.H. Improving Students’ Academic Performance with AI and Semantic Technologies. arXiv 2022, arXiv:2206.03213. [Google Scholar] [CrossRef]
- Bagunaid, W.; Chilamkurti, N.; Shahraki, A.S.; Bamashmos, S. Visual Data and Pattern Analysis for Smart Education: A Robust DRL-Based Early Warning System for Student Performance Prediction. Future Internet 2024, 16, 206. [Google Scholar] [CrossRef]
- Tsai, S.C.; Chen, C.H.; Shiao, Y.T.; Ciou, J.S.; Wu, T.N. Precision education with statistical learning and deep learning: A case study in Taiwan. Int. J. Educ. Technol. High. Educ. 2020, 17, 12. [Google Scholar] [CrossRef]
- Yaacob, W.F.W.; Sobri, N.M.; Nasir, S.A.M.; Norshahidi, N.D.; Husin, W.Z.W. Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques. J. Phys. Conf. Ser. 2020, 1496, 012005. [Google Scholar] [CrossRef]
- Suaprae, P.; Nilsook, P.; Wannapiroon, P. System Framework of Intelligent Consulting Systems with Intellectual Technology. In Proceedings of the 9th International Conference on Computer and Communications Management (ICCCM ’21), Singapore, 16–18 July 2021; pp. 31–36. [Google Scholar] [CrossRef]
- Kondo, N.; Okubo, M.; Hatanaka, T. Early Detection of At-Risk Students Using Machine Learning Based on LMS Log Data. In Proceedings of the International Conference on Advanced Applied Informatics, Hamamatsu, Japan, 9–13 July 2017; pp. 198–201. [Google Scholar] [CrossRef]
- Sulak, S.; Koklu, N. Predicting Student Dropout Using Machine Learning Algorithms. Intell. Methods Eng. Sci. 2025, 3, 91–98. [Google Scholar] [CrossRef]
- Shin, S. Datafication of Education and Machine Learning Techniques in Education Research: A Critical Review. Gyoyug Yeon’Gu 2024, 2, 215–240. [Google Scholar] [CrossRef]
- Rosdiana, R.; Sunandar, E.; Purnama, A.; Arribathi, A.H.; Yusuf, D.A.; Daeli, O.P.M. Strategies and Consequences of AI-Enhanced Predictive Models for Early Identification of Students at Risk. In Proceedings of the 2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT), Tangerang, Indonesia, 7–8 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Sridevi, K.; Ranjani, A.P.; Ahmad, S.S. Recognizing Students At-Danger with Early Intervention Using Machine Learning Techniques. J. Adv. Zool. 2024, 45, 481. [Google Scholar] [CrossRef]
- Prajwal, P.; Sahana, L.R.; Kanchana, V. Forecasting Student Attrition Using Machine Learning. In Proceedings of the 4th Asian Conference on Innovation in Technology (ASIANCON 2024), Pimpri Chinchwad College of Engineering and Research (PCCOER), Pune, India, 23–25 August 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Prasanth, A.; Alqahtani, H. Predictive Modeling of Student Behavior for Early Dropout Detection in Universities using Machine Learning Techniques. In Proceedings of the International Conference on Emerging Technologies and Applications, Bahrain, Bahrain, 25–27 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Al-Tameemi, G.; Xue, J.; Ajit, S.; Kanakis, T.; Hadi, I. Predictive Learning Analytics in Higher Education: Factors, Methods and Challenges. In Proceedings of the International Conference on Advances in Computing and Communication Engineering, Las Vegas, NV, USA, 22–24 June 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Patel, K.; Amin, K. Predictive modeling of dropout in MOOCs using machine learning techniques. Sci. Temper 2024, 15, 2199–2206. [Google Scholar] [CrossRef]
- Tahiru, F. Predicting At-Risk Students in a Higher Educational Institution in Ghana for Early Intervention Using Machine Learning. Ph.D. Thesis, Durban University of Technology, Durban, South Africa, 2023. [Google Scholar] [CrossRef]
- Mduma, N.; Kalegele, K.; Machuve, D. Machine learning approach for reducing students dropout rates. Int. J. Adv. Comput. Res. 2019, 9, 156–169. [Google Scholar] [CrossRef]
- Mnyawami, Y.N.; Maziku, H.; Mushi, J.C. Enhanced Model for Predicting Student Dropouts in Developing Countries Using Automated Machine Learning Approach: A Case of Tanzanian’s Secondary Schools. Appl. Artif. Intell. 2022, 36, 2071406. [Google Scholar] [CrossRef]
- Sani, G.; Oladipo, F.; Ogbuju, E.; Agbo, F.J. Development of a Predictive Model of Student Attrition Rate. J. Appl. Artif. Intell. 2022, 3, 1–12. [Google Scholar] [CrossRef]
- Fauszt, T.; Erdélyi, K.; Dobák, D.; Bognár, L.; Kovács, E. Design of a Machine Learning Model to Predict Student Attrition. Int. J. Emerg. Technol. Learn. 2023, 18, 184. [Google Scholar] [CrossRef]
- Nagy, M. Interpretable Dropout Prediction: Towards XAI-Based Personalized Intervention. Int. J. Artif. Intell. Educ. 2023, 34, 274–300. [Google Scholar] [CrossRef]
- Berens, J.; Schneider, K.; Görtz, S.; Oster, S.; Burghoff, J. Early Detection of Students at Risk—Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods. In Proceedings of the Educational Data Mining Conference, Montréal, QC, Canada, 2–5 July 2019; Volume 11, pp. 1–41. [Google Scholar] [CrossRef]
- Glandorf, D.; Lee, H.R.; Orona, G.A.; Pumptow, M.; Yu, R.; Fischer, C. Temporal and Between-Group Variability in College Dropout Prediction. In Proceedings of the 14th Learning Analytics and Knowledge Conference, Kyoto, Japan, 18–22 March 2024. [Google Scholar] [CrossRef]
- Hammoodi, M.S.; Al-Azawei, A.H.S. Using Socio-Demographic Information in Predicting Students’ Degree Completion based on a Dynamic Model. Int. J. Intell. Eng. Syst. 2022, 15, 107–115. [Google Scholar] [CrossRef]
- Perchinunno, P.; Bilancia, M.; Vitale, D. A Statistical Analysis of Factors Affecting Higher Education Dropouts. Soc. Indic. Res. 2021, 156, 341–362. [Google Scholar] [CrossRef]
- Vaarma, M.; Li, H. Predicting student dropouts with machine learning: An empirical study in Finnish higher education. Technol. Soc. 2024, 76, 102474. [Google Scholar] [CrossRef]
- Ortiz-Lozano, J.M.; Aparicio-Chueca, P.; Triadó-Ivern, X.; Arroyo-Barrigüete, J.L. Early dropout predictors in social sciences and management degree students. Stud. High. Educ. 2023, 49, 1303–1316. [Google Scholar] [CrossRef]
- Delogu, M.; Lagravinese, R.; Paolini, D.; Resce, G. Predicting dropout from higher education: Evidence from Italy. Econ. Model. 2024, 130, 106583. [Google Scholar] [CrossRef]
- Simón, E.J.L.; Puerta, J.G. Prediction of early dropout in higher education using the SCPQ. Cogent Psychol. 2022, 9, 2123588. [Google Scholar] [CrossRef]
- Fernández-García, A.J.; Preciado, J.C.; Melchor, F.; Rodríguez-Echeverría, R.; Conejero, J.M.; Sánchez-Figueroa, F. A Real-Life Machine Learning Experience for Predicting University Dropout at Different Stages Using Academic Data. IEEE Access 2021, 9, 133076–133090. [Google Scholar] [CrossRef]
- Blanquet, L.; Grilo, J.; Strecht, P.; Camanho, A. Curbing Dropout: Predictive Analytics at the University of Porto. In Proceedings of the 23rd Conference of the Portuguese Association for Information Systems (CAPSI 2023), Porto, Portugal, 19–21 October 2023; p. 14. Available online: https://aisel.aisnet.org/capsi2023/14 (accessed on 15 April 2025).
- Realinho, V.; Machado, J.A.D.; Baptista, L.M.T.; Martins, M. Predicting Student Dropout and Academic Success. Data 2022, 7, 146. [Google Scholar] [CrossRef]
- Martins, M.V.; Baptista, L.; Machado, J.; Realinho, V. Multi-class phased prediction of academic performance and dropout in higher education. Appl. Sci. 2023, 13, 4702. [Google Scholar] [CrossRef]
- Bassetti, E.; Conti, A.; Panizzi, E.; Tolomei, G. ISIDE: Proactively Assist University Students at Risk of Dropout. In Proceedings of the 2022 IEEE International Conference on Big Data (BigData 2022), Osaka, Japan, 17–20 December 2022; pp. 1776–1783. [Google Scholar] [CrossRef]
- Segura, M.; Mello, J.; Hernández, A. Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role? Mathematics 2022, 10, 3359. [Google Scholar] [CrossRef]
- Agrusti, F.; Bonavolonta, G.; Mezzini, M. Use of Artificial Intelligence to Predict University Dropout: A Quantitative Research. In Proceedings of the EDEN Conference Proceedings, Virtual, 21–24 June 2020; pp. 245–254. [Google Scholar] [CrossRef]
- Plak, S.; Cornelisz, I.; Meeter, M.; van Klaveren, C. Early warning systems for more effective student counselling in higher education: Evidence from a Dutch field experiment. High. Educ. Q. 2021, 76, 131–152. [Google Scholar] [CrossRef]
- Roda-Segarra, J.; de-la Peña, C.; Mengual-Andrés, S. Effectiveness of Artificial Intelligence Models for Predicting School Dropout: A Meta-Analysis. REMIE Multidiscip. J. Educ. Res. 2024, 14, 317–340. [Google Scholar] [CrossRef]
- Eegdeman, I.; Cornelisz, I.; Meeter, M.; van Klaveren, C. Identifying false positives when targeting students at risk of dropping out. Educ. Econ. 2023, 31, 313–325. [Google Scholar] [CrossRef]
- Shafiq, D.A.; Marjani, M.; Habeeb, R.A.A.; Asirvatham, D. Student Retention Using Educational Data Mining and Predictive Analytics: A Systematic Literature Review. IEEE Access 2022, 10, 72480–72503. [Google Scholar] [CrossRef]
- Sonderlund, A.L.; Hughes, E.; Smith, J.R. The efficacy of learning analytics interventions in higher education: A systematic review. Br. J. Educ. Technol. 2019, 50, 2594–2618. [Google Scholar] [CrossRef]
- Ennibras, F.; Aoula, E.S.; Bouihi, B. AI in Preventing Dropout in Distance Higher Education: A Systematic Literature Review. In Proceedings of the 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Fez, Morocco, 16–17 May 2024. [Google Scholar] [CrossRef]
- Mukooyo, H.; Kasse, J.P. Towards Sustainable Education: A Machine Learning Model for Early Student Dropout Prediction in Higher Education Institutions. Uganda High. Educ. Rev. J. 2024, 11, 57–68. [Google Scholar] [CrossRef]
- Dake, D.K.; Buabeng-Andoh, C. Using Machine Learning Techniques to Predict Learner Drop-out Rate in Higher Educational Institutions. Mob. Inf. Syst. 2022, 2022, 2670562. [Google Scholar] [CrossRef]
- Aracelli, G.S.; Bertha, S.N.; Angela, P.C. Monitoring and Academic Accompaniment of University Students Using Emerging Technologies. Int. J. Relig. 2024, 5, 2926–2937. [Google Scholar] [CrossRef]
- Olivares-Rodríguez, C.; Moreno-Marcos, P.M.; Scheihing, E.; Muñoz-Merino, P.J.; Kloos, C.D. An Actionable Learning Path-based Model to Predict and Describe Academic Dropout. Rev. Ing. Investig. 2024, 44, e109389. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1999. [Google Scholar]
- Shin, N.; Kim, J. An Exploration of Learner Progress and Drop-Out in Korea National Open University. Distance Educ. 1999, 20, 81–95. [Google Scholar] [CrossRef]
- Dietterich, T.G. Machine learning. ACM Comput. Surv. 1996, 28, 3-es. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Pierrakeas, C.J.; Pintelas, P.E. Preventing Student Dropout in Distance Learning Using Machine Learning Techniques. In Proceedings of the 7th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES 2003), Oxford, UK, 3–5 September 2003; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2003; Volume 2774, pp. 267–274. [Google Scholar] [CrossRef]
- Lodge, J.M. What if Student Attrition Was Treated Like an Illness? An Epidemiological Model for Learning Analytics. In Proceedings of the ASCILITE 2011: Changing Demands, Changing Directions, Hobart, TAS, Australia, 4–7 December 2011; pp. 822–825. [Google Scholar]
- Kamal, M.S.; Chowdhury, L.; Nimmy, S.F. New Dropout Prediction for Intelligent System. Int. J. Comput. Appl. 2012, 42, 26–31. [Google Scholar] [CrossRef]
- Parker, A. A Study of Variables that Predict Dropout from Distance Education. J. Educ. Technol. 1999, 1, 1–10. [Google Scholar]
- Niemi, D.; Gitin, E. Using Big Data to Predict Student Dropouts: Technology Affordances for Research. In Proceedings of the Cognition and Exploratory Learning in Digital Age, Madrid, Spain, 19–21 October 2012; Volume 2012. [Google Scholar]
- Bukralia, R.; Deokar, A.V.; Sarnikar, S.; Hawkes, M. Using Machine Learning Techniques in Student Dropout Prediction. In Cases on Institutional Research Systems; IGI Global: Hershey, PA, USA, 2012; pp. 117–131. [Google Scholar] [CrossRef]
- Hall, O.P. Detecting students at risk using machine learning: Applications to business education. Int. J. Soc. Media Interact. Learn. Environ. 2022, 6, 267. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Le, P.; Nguyen, T.T.T.; Su, A.K. A multivariate analysis of the early dropout using classical machine learning and local interpretable model-agnostic explanations. CTU J. Innov. Sustain. Dev. 2024, 16, 98–106. [Google Scholar] [CrossRef]
- Lee, S.; Chung, J.Y. The Machine Learning-Based Dropout Early Warning System for Improving the Performance of Dropout Prediction. Appl. Sci. 2019, 9, 3093. [Google Scholar] [CrossRef]
- Fields, J.; Chovanec, K.; Madiraju, P. Integrating categorical and continuous data in a cluster-then-classify methodology for predicting undergraduate student success. In Proceedings of the IEEE International Conference on Big Data, Washington, DC, USA, 15–18 December 2024; pp. 8118–8126. [Google Scholar] [CrossRef]
- Huang, Q.; Nathawitharana, N.; Ong, K.L.; Keller, S.; Alahakoon, D. Mind the Gap: From Analytics to Action in Student Retention. In Advances in Business Strategy and Competitive Advantage: Applying Business Intelligence Initiatives in Healthcare and Organizational Settings; Nam, K., Ed.; IGI Global: Hershey, PA, USA, 2019; pp. 218–236. [Google Scholar] [CrossRef]
- Gong, L.; Liu, Y. Design and Application of Intervention Model based on Learning Analytics under Blended Learning Environment. In Proceedings of the 2019 7th International Conference on Information and Education Technology, Aizu-Wakamatsu, Japan, 29–31 March 2019; pp. 225–229. [Google Scholar] [CrossRef]
- Heredia-Jiménez, V.; Jiménez-Macías, A.; Ortiz-Rojas, M. Using Design-Based Research for an Academic Dropout and Retention Dashboard. In Proceedings of the International Conference on eDemocracy & eGovernment, Quito, Ecuador, 3–5 April 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Cohausz, L. When probabilities are not enough-A framework for causal explanations of student success models. J. Educ. Data Min. 2022, 14, 52–75. [Google Scholar]
- Karypis, G. Improving Higher Education: Learning Analytics & Recommender Systems Research. In Proceedings of the Eleventh ACM Conference on Recommender Systems (RecSys ’17), Villa Erba, Cernobbio, Italy, 27–31 August 2017; p. 2. [Google Scholar] [CrossRef]
- Kiss, V.; Maldonado, E.; Segall, M. The use of semester course data for machine learning prediction of college dropout rates. J. High. Educ. Theory Pract. 2022, 22, 64–74. [Google Scholar]
- Paul, D.B. Machine Learning Model for Student Drop-Out Prediction Based on Student Engagement. In Proceedings of the 6th International Conference “New Technologies, Development and Applications” (NT 2023), Sarajevo, Bosnia and Herzegovina, 22–24 June 2023; Lecture Notes in Networks and Systems. Springer: Cham, Switzerland, 2023; Volume 687, pp. 486–496. [Google Scholar] [CrossRef]
- Gkontzis, A.F.; Kotsiantis, S.; Panagiotakopoulos, C.T.; Verykios, V.S. A predictive analytics framework as a countermeasure for attrition of students. Interact. Learn. Environ. 2019, 30, 1028–1043. [Google Scholar] [CrossRef]
- Gray, C.C.; Perkins, D. Utilizing Early Engagement and Machine Learning to Predict Student Outcomes. Comput. Educ. 2019, 131, 22–32. [Google Scholar] [CrossRef]
- Cam, H.N.T.; Sarlan, A.; Arshad, N.I. A hybrid model integrating recurrent neural networks and the semi-supervised support vector machine for identification of early student dropout risk. PeerJ 2024, 10, e2572. [Google Scholar] [CrossRef]
- Wagner, K.; Merceron, A.; Sauer, P.; Pinkwart, N. Which Approach Best Predicts Dropouts in Higher Education? In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU ’23), Prague, Czech Republic, 21–23 April 2023; pp. 15–26. [Google Scholar] [CrossRef]
- Mosia, M.S. Identifying At-Risk Students for Early Intervention—A Probabilistic Machine Learning Approach. Appl. Sci. 2023, 13, 3869. [Google Scholar] [CrossRef]
- Adnan, M.; Habib, A.; Ashraf, J.; Mussadiq, S.; Raza, A.A.; Abid, M.; Bashir, M.; Khan, S.U. Predicting at-Risk Students at Different Percentages of Course Length for Early Intervention Using Machine Learning Models. IEEE Access 2021, 9, 7519–7539. [Google Scholar] [CrossRef]
- Demartini, C.G.; Sciascia, L.; Bosso, A.; Manuri, F. Artificial Intelligence Bringing Improvements to Adaptive Learning in Education: A Case Study. Sustainability 2024, 16, 1347. [Google Scholar] [CrossRef]
- López-García, L.; Lino-Ramírez, C.; Zamudio-Rodríguez, V.M.; Valle-Hernández, J.D. Predictive model for the analysis of academic performance and preventing student dropout using machine learning techniques. Rev. Educ. Tec. 2022, 6, 1–5. [Google Scholar] [CrossRef]
- Alalawi, K.; Athauda, R.; Chiong, R. An Extended Learning Analytics Framework Integrating Machine Learning and Pedagogical Approaches for Student Performance Prediction and Intervention. Int. J. Artif. Intell. Educ. 2024. [Google Scholar] [CrossRef]
- Balcıoğlu, Y.S.; Artar, M. Predicting academic performance of students with machine learning. Inf. Dev. 2023, 39, 390–398. [Google Scholar] [CrossRef]
- Guanin-Fajardo, J.H.; Guaña-Moya, J.; Casillas, J. Predicting Academic Success of College Students Using Machine Learning Techniques. Data 2024, 9, 60. [Google Scholar] [CrossRef]
- Ujkani, B.; Minkovska, D.; Hinov, N. Course Success Prediction and Early Identification of At-Risk Students Using Explainable Artificial Intelligence. Electronics 2024, 13, 4157. [Google Scholar] [CrossRef]
- Embarak, O.; Hawarna, S.A. Automated AI-driven System for Early Detection of At-risk Students. Procedia Comput. Sci. 2023, 231, 151–160. [Google Scholar] [CrossRef]
- Vijaya, P.; Rajendran, R.; Kumar, B.; Mani, J. Early Prediction of At-Risk Students in Higher Education Institutions Using Adaptive Dwarf Mongoose Optimization Enabled Deep Learning. In Computational Sciences and Sustainable Technologies: First International Conference, ICCSST 2023, Bangalore, India, 8–9 May 2023, Revised Selected Papers; Immanuel, A., Chandra, J., Aurelia, S., Mani, J., Padmanabha, V., Eds.; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2024; Volume 1973, pp. 15–29. [Google Scholar] [CrossRef]
- Alblawi, A.S. Big Data and Learning Analytics in Higher Education: Demystifying Variety, Acquisition, Storage, NLP and Analytics. arXiv 2018, arXiv:1801.06052. [Google Scholar]
- Durrani, U.; Akpınar, M.; Togher, M.; Malik, A.; Đorđević, M.; Aoudi, S. Assessing the Effectiveness of Large Language Models in Predicting Student Dropout Rates. In Proceedings of the 2024 International Conference on Artificial Intelligence, Metaverse and Cybersecurity (ICAMAC), Dubai, United Arab Emirates, 25–26 October 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Masood, S.W.; Begum, S.A. Data Collection and Pre-processing for Machine Learning-Based Student Dropout Prediction. In Big Data, Machine Learning, and Applications; Dutta Borah, M., Laiphrakpam, D.S., Auluck, N., Balas, V.E., Eds.; Lecture Notes in Electrical Engineering; Springer Nature Singapore: Singapore, 2024; Volume 1053, pp. 355–367. [Google Scholar] [CrossRef]
- Jaiswal, G.; Sharma, A.; Yadav, S. Analytical Approach for Predicting Dropouts in Higher Education. Int. J. Inf. Commun. Technol. Educ. 2019, 15, 89–102. [Google Scholar] [CrossRef]
- Kande, J. Predictive Modeling for Early Detection of High School Dropouts Using Machine Learning Techniques. J. Data Anal. Artif. Intell. 2024, 3, 99–105. [Google Scholar] [CrossRef]
- Goran, R.; Jovanovic, L.; Bačanin, N.; Stanković, M.S.; Šimić, V.; Antonijević, M.; Živković, M. Identifying and understanding student dropouts using metaheuristic optimized classifiers and explainable artificial intelligence techniques. IEEE Access 2024, 12, 122377–122400. [Google Scholar] [CrossRef]
- Oqaidi, K.; Aouhassi, S.; Mansouri, K. Towards a Students’ Dropout Prediction Model in Higher Education Institutions Using Machine Learning Algorithms. Int. J. Emerg. Technol. Learn. (IJET) 2022, 17, 103–117. [Google Scholar] [CrossRef]
- Keane, M.; Gray, G. An Investigation into the pre-enrolment characteristics of students to identify factors predictive of academic performance within first year computing and engineering programmes of study in a Higher Educational Institution. All Irel. J. High. Educ. 2019, 11, 1–20. [Google Scholar]
- de Jesus, C.G.; Ledda, M.K.C. Intervention Support Program for Students at Risk of Dropping Out Using Fuzzy Logic-Based Prescriptive Analytics. In Proceedings of the International Colloquium on Signal Processing and Its Applications, Langkawi, Malaysia, 5–6 March 2021; pp. 144–149. [Google Scholar] [CrossRef]
- Ismaili, B.; Besimi, A. A Data Warehousing Framework for Predictive Analytics in Higher Education: A Focus on Student at-Risk Identification. SEEU Rev. 2024, 19, 43–57. [Google Scholar] [CrossRef]
- Sosa, D.; Torres, H.; Naranjo, M.; Matango, R. Modelo de Inteligencia de Negocios para el análisis de la deserción estudiantil en las Instituciones de Educación Superior. Mem. Sucre Rev. 2022, 2, 71–86. [Google Scholar]
- Maldonado, S.; Miranda, J.; Olaya, D.; Vásquez, J.; Verbeke, W. Redefining Profit Metrics for boosting Student Retention in Higher Education. Decis. Support Syst. 2021, 143, 113493. [Google Scholar] [CrossRef]
- Seidel, E.; Kutieleh, S. Using predictive analytics to target and improve first year student attrition. Aust. J. Educ. 2017, 61, 200–218. [Google Scholar] [CrossRef]
- Karabacak, E.S.; Yaslan, Y. Comparison of Machine Learning Methods for Early Detection of Student Dropouts. In Proceedings of the 8th International Conference on Computer Science and Engineering (UBMK 2023), Mehmet Akif Ersoy University, Burdur, Turkey, 13–15 September 2023; pp. 376–381. [Google Scholar] [CrossRef]
- Delen, D. Predicting Student Attrition with Data Mining Methods. J. Coll. Stud. Retent. Res. Theory Pract. 2011, 13, 17–35. [Google Scholar] [CrossRef]
- Padmasiri, P.; Kasthuriarachchi, S. Interpretable Prediction of Student Dropout Using Explainable AI Models. In Proceedings of the 2024 International Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, 4 April 2024. [Google Scholar] [CrossRef]
- Ghosh, P.; Charit, A.; Banerjee, H.; Bandhu, D.; Ghosh, A.; Pal, A.; Goto, T.; Sen, S. A Machine Learning Based Automated Model for Managing Student Dropout. In Proceedings of the 2024 IEEE/ACIS 22nd International Conference on Software Engineering Research, Management and Applications (SERA), Honolulu, HI, USA, 30 May–1 June 2024; pp. 261–266. [Google Scholar] [CrossRef]
- Santana, M.A.; Costa, E.; dos Santos Neto, B.F.; Silva, I.C.L.; Rego, J.B.A. A predictive model for identifying students with dropout profiles in online courses. In Proceedings of the EDM (Workshops), Madrid, Spain, 26–29 June 2015. [Google Scholar]
- Jiménez-Gutiérrez, A.L.; Mota-Hernandez, C.; Mezura-Montes, E.; Alvarado-Corona, R. Application of the performance of machine learning techniques as support in the prediction of school dropout. Dent. Sci. Rep. 2024, 14, 3957. [Google Scholar] [CrossRef]
- Noviandy, T.R.; Zahriah, Z.; Yandri, E.; Jalil, Z.; Yusuf, M.; Yusof, N.; Lala, A.; Idroes, R. Machine Learning for Early Detection of Dropout Risks and Academic Excellence: A Stacked Classifier Approach. J. Educ. Manag. Learn. 2024, 2, 28–34. [Google Scholar] [CrossRef]
- Kowarsch, D. Elevating Student Success: Harnessing Machine Learning to Enhance University Completion Rates. In Proceedings of Intelligent Human Systems Integration (IHSI 2025): Integrating People and Intelligent Systems, New York, NY, USA, 26–30 July 2025; AHFE Open Access: New York, NY, USA, 2025. [Google Scholar] [CrossRef]
- Dwivedi, D.N.; Mahanty, G.; Khashouf, S. Predictive Analytics for Reducing University Dropout Rates. In Contemporary Approaches to Activity Theory: Interdisciplinary Perspectives on Human Behavior; Hansson, T., Ed.; Advances in Human and Social Aspects of Technology; IGI Global: Hershey, PA, USA, 2024; pp. 186–202. [Google Scholar] [CrossRef]
- Shiao, Y.T.; Chen, C.H.; Wu, K.F.; Chen, B.L.; Chou, Y.H.; Wu, T.N. Reducing dropout rate through a deep learning model for sustainable education: Long-term tracking of learning outcomes of an undergraduate cohort from 2018 to 2021. Smart Learn. Environ. 2023, 10, 55. [Google Scholar] [CrossRef]
- Zhang, L.; Rangwala, H. Early Identification of At-Risk Students Using Iterative Logistic Regression. In Proceedings of the 19th International Conference on Artificial Intelligence in Education (AIED 2018), London, UK, 27–30 June 2018; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2018; Volume 10947, pp. 613–626. [Google Scholar] [CrossRef]
- Lee, S.; Jun, Y.K. Student Dropout Prediction for University with High Precision and Recall. Appl. Sci. 2023, 13, 6275. [Google Scholar] [CrossRef]
- Bonifro, F.D.; Gabbrielli, M.; Lisanti, G.; Zingaro, S.P. Student Dropout Prediction. In Artificial Intelligence in Education; Springer: Cham, Switzerland, 2020; Volume 12163, pp. 129–140. [Google Scholar] [CrossRef]
- Baneres, D.; Rodríguez, M.E.; Guerrero-Roldán, A.E.; Karadeniz, A. An Early Warning System to Detect At-Risk Students in Online Higher Education. Appl. Sci. 2020, 10, 4427. [Google Scholar] [CrossRef]
- Lainjo, B. Mitigating Academic Institution Dropout Rates with Predictive Analytics Algorithms. Int. J. Educ. Teach. Soc. Sci. 2023, 3, 29–49. [Google Scholar] [CrossRef]
- Liu, K.; Tatinati, S.; Khong, A.W.H. A Weighted Feature Extraction Technique Based on Temporal Accumulation of Learner Behavior Features for Early Prediction of Dropouts. In Proceedings of the IEEE International Conference on Teaching, Assessment, and Learning for Engineering, Takamatsu, Japan, 8–11 December 2020; pp. 295–302. [Google Scholar] [CrossRef]
- Esquivel, J.A. Towards Predicting Student’s Dropout in Higher Education Using Supervised Machine Learning Techniques. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Lisbon, Portugal, 18–20 July 2023. [Google Scholar] [CrossRef]
- Albugami, S.; Almagrabi, H.; Wali, A. From Data to Decision: Machine Learning and Explainable AI in Student Dropout Prediction. J. e-Learn. High. Educ. 2024, 2024, 246301. [Google Scholar] [CrossRef]
- Jiménez, A.F.F.; Lee, V.S.S.; Belmonte, I.I.; González, E.F.P. Application of Data Science and Machine Learning in the Prediction of College Dropout: A Data-Driven Predictive Approach. In Proceedings of the 12th International Conference on Software Process Improvement (CIMPS 2023), Cuernavaca, Mexico, 18–20 October 2023; pp. 234–243. [Google Scholar] [CrossRef]
- Sabbir, W.; Abdullah-Al-Kafi, M.; Afridi, A.S.; Rahman, M.S.; Karmakar, M. Improving Predictive Analytics for Student Dropout: A Comprehensive Analysis and Model Evaluation. In Proceedings of the Conference, New Delhi, India, 28 February–1 March 2024; pp. 951–956. [Google Scholar] [CrossRef]
- Cardona, T.; Cudney, E.A.; Hoerl, R.; Snyder, J. Data Mining and Machine Learning Retention Models in Higher Education. J. Coll. Stud. Retent. Res. Theory Pract. 2023, 25, 51–75. [Google Scholar] [CrossRef]
- Embarak, O. Apply Machine Learning Algorithms to Predict At-Risk Students to Admission Period. In Proceedings of the 2020 7th International Conference on Information Technology Trends (ITT 2020), Virtual, Abu Dhabi, United Arab Emirates, 25–26 November 2020; pp. 190–195. [Google Scholar] [CrossRef]
- Porras, J.M.; Lara, J.A.; Romero, C.; Ventura, S. A Case-Study Comparison of Machine Learning Approaches for Predicting Student’s Dropout from Multiple Online Educational Entities. Algorithms 2023, 16, 554. [Google Scholar] [CrossRef]
- Manthon, A.; Piriyasurawong, P. The Causal Factors Affecting the Management of Predictive Student Relationship using Business Intelligence Concept for the Retention of Undergraduate Students. High. Educ. Stud. 2024, 15, 106. [Google Scholar] [CrossRef]
- Ujkani, B.; Minkovska, D.; Stoyanova, L. Application of Logistic Regression Technique for Predicting Student Dropout. In Proceedings of the XXXI International Scientific Conference Electronics (ET 2022), Sozopol, Bulgaria, 13–15 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Patil, O.S.; Dhere, P.M. Predicting Dropout Students Using Data Mining Techniques. Int. J. Res. 2015, 2, 369–375. [Google Scholar]
- Perez, B.; Castellanos, C.; Correal, D. Applying Data Mining Techniques to Predict Student Dropout: A Case Study. In Proceedings of the Conference on Latin American Computing, Medellin, Colombia, 16–18 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hafzan, M.Y.N.N.; Safaai, D.; Asiah, M.; Saberi, M.M.; Syuhaida, S.S. Review on Predictive Modelling Techniques for Identifying Students at Risk in University Environment. MATEC Web Conf. 2019, 255, 03002. [Google Scholar] [CrossRef]
- Lourens, A.; Bleazard, D. Applying predictive analytics in identifying students at risk: A case study. S. Afr. J. High. Educ. 2016, 30, 129–142. [Google Scholar] [CrossRef]
- Shynarbek, N.; Saparzhanov, Y.; Saduakassova, A.; Orynbassar, A.; Sagyndyk, N. Forecasting Dropout In University Based On Students’ Background Profile Data Through Automated Machine Learning Approach. In Proceedings of the IEEE International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Osemwegie, E.E.; Amadin, F.; Uduehi, O.M. Student dropout prediction using machine learning. Fudma J. Sci. 2023, 7, 347–353. [Google Scholar] [CrossRef]
- Duan, Y.; Cao, G.; Ong, V.K.; Woolley, M. Intelligent Student Engagement Management: Applying Business Intelligence in Higher Education. In Proceedings of the International Conference on Information and Social Science (ISS 2013), Nagoya, Japan, 24–26 September 2013. [Google Scholar]
- Davis, M.C.; Burgher, K.E. Predictive Analytics for Student Retention: Group vs. Individual Behavior. Coll. Univ. 2013, 88, 63. [Google Scholar]
- Wang, X.; Schneider, H.; Walsh, K.R. A Predictive Analytics Approach to Building a Decision Support System for Improving Graduation Rates at a Four-Year College. J. Organ. End User Comput. 2020, 32, 43–62. [Google Scholar] [CrossRef]
- Alejandro Becerra, J.P.; Aguirre Ochoa, M.; Romero Torres, M.E.; Estrella Ríos, L. La Inteligencia de negocios con Power Pivot usado en el Instituto Superior Tecnológico Huaquillas: Business intelligence with Power Pivot used at Instituto Superior Tecnológico Huaquillas. Cumbres 2021, 7, 71–81. [Google Scholar] [CrossRef]
- Almonteros, J.R.; Matias, J.B.; Pitao, J.V.S. Forecasting Students’ Success To Graduate Using Predictive Analytics. Int. J. Comput. Digit. Syst. 2024, 15, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, N.; Reis, A.; Branco, F.; Alves, P. Roadmap for Implementing Business Intelligence Systems in Higher Education Institutions: Exploratory Work. In Proceedings of the 20th International Conference on Smart Business Technologies (ICSBT 2023), Rome, Italy, 11–13 July 2023; pp. 162–169. [Google Scholar] [CrossRef]
- Menolli, A.; Horita, F.; Dias, J.J.L.; Coelho, R. BI–based methodology for analyzing higher education: A case study of dropout phenomenon in information systems courses. In Proceedings of the XVI Brazilian Symposium on Information Systems, São Bernardo do Campo, Brazil, 3–6 November 2020; pp. 1–8. [Google Scholar]
- Sánchez Arevalo, M.L.; Abuchar Porras, A.; Gutiérrez Herrera, J.D.; Ferro Escobar, R. Proposal for the Implementation of a Business Intelligence Tool to Detect Cases of Student Desertion at the Francisco José de Caldas District University. In Proceedings of the AETA 2019—Recent Advances in Electrical Engineering and Related Sciences: Theory and Application (AETA 2019), Bogotá, Colombia, 6–8 November 2019; Lecture Notes in Electrical Engineering. Springer: Cham, Switzerland, 2021; Volume 685, pp. 482–489. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Palacios-Pacheco, X.; Luján-Mora, S. A business intelligence framework for analyzing educational data. Sustainability 2020, 12, 5745. [Google Scholar] [CrossRef]
- Psyridou, M.; Prezja, F.; Torppa, M.; Lerkkanen, M.; Poikkeus, A.; Vasalampi, K. Machine learning predicts upper secondary education dropout as early as the end of primary school. Dent. Sci. Rep. 2024, 14, 12956. [Google Scholar] [CrossRef]
- Ferdousee, Z.; Haque, M.R. Integrating Feature Selection and Extraction with Tuned Multilayer Perceptrons for Predicting Student Dropout Risk in Higher Education. In Proceedings of the 2024 2nd International Conference on Information and Communication Technology (ICICT), Dhaka, Bangladesh, 21–22 October 2024; pp. 11–15. [Google Scholar] [CrossRef]
- Weagant, R.; Zhao, Z.; Bradley, A.; Collins, C. AdVizor: Using Visual Explanations to Guide Data-Driven Student Advising. In Proceedings of the 2024 IEEE VIS Workshop on Visualization Education, Literacy, and Activities (EduVIS), St. Pete Beach, FL, USA, 13–14 October 2024; pp. 21–29. [Google Scholar] [CrossRef]
- Bokgoshi, L.; Sixhaxa, K.; Jadhav, A.; Nyamane, S.; Ajoodha, R. Enhancing Timely Graduations: An Explainable AI Approach to Predict Academic Risks in South African Students. In Proceedings of the IEEE International Conference on Electrical, Computer, and Energy Technologies (ICECET), Cape Town, South Africa, 16–17 November 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Baneres, D.; Rodríguez-González, M.E.; Guerrero-Roldán, A.E.; Cortadas, P. An early warning system to identify and intervene online dropout learners. Int. J. Educ. Technol. High. Educ. 2023, 20, 3. [Google Scholar] [CrossRef]
- Kostopoulos, G.; Kotsiantis, S.; Ragos, O.; Grapsa, T.N. Early dropout prediction in distance higher education using active learning. In Proceedings of the International Conference on Information, Intelligence, Systems and Applications, Larnaca, Cyprus, 27–30 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Drzyzga, G.; Harder, T. A Three Level Design Study Approach to Develop a Student-Centered Learner Dashboard. In Proceedings of the 7th International Conference on Computer-Human Interaction Research and Applications (CHIRA 2023), Rome, Italy, 16–17 November 2023; Communications in Computer and Information Science. Springer: Cham, Switzerland, 2023; Volume 1996, pp. 262–281. [Google Scholar] [CrossRef]
- Fuentes, N.B.; Feliscuzo, L.S.; Romana, C.L.C.S. Enhancing Student Retention in Higher Education: A Fuzzy Logic Approach to Prescriptive Analytics. In Proceedings of the 2024 IEEE 7th International Conference on Big Data and Artificial Intelligence (BDAI), Beijing, China, 5–7 July 2024; pp. 41–48. [Google Scholar] [CrossRef]
- Bousalem, Z.; Qazdar, A.; Guabassi, I.E.; Haj, A. A Recommendation System Based on Early Academic Performance Prediction and Student Classification: Utilizing Artificial Intelligence and Mobile-Based Application. Int. J. Interact. Mob. Technol. 2024, 18, 169–189. [Google Scholar] [CrossRef]
- Malatji, M.M.; Mohlomi, R.; Kirui, G.K.; Mndebele, S.; Ekoru, J.E.; Madahana, M.C. Student Retention Model via Machine Learning and Predictive analysis. In Proceedings of the 2024 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 29–31 May 2024. [Google Scholar] [CrossRef]
- Herodotou, C.; Naydenova, G.; Boroowa, A.; Gilmour, A.; Rienties, B. How Can Predictive Learning Analytics and Motivational Interventions Increase Student Retention and Enhance Administrative Support in Distance Education. J. Learn. Anal. 2020, 7, 72–83. [Google Scholar] [CrossRef]
- Bilquise, G.; Shaalan, K. AI-based Academic Advising Framework: A Knowledge Management Perspective. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 193–203. [Google Scholar] [CrossRef]
- Böttcher, A.; Thurner, V.; Hafner, T.; Hertle, J. A Data Science-based Approach for Identifying Counseling Needs in first-year Students. In Proceedings of the Global Engineering Education Conference, Vienna, Austria, 21–23 April 2021; pp. 420–429. [Google Scholar] [CrossRef]
- Mun, J.; Jo, M. Applying machine learning-based models to prevent University student dropouts. Gyo’yug Pyeong’ga Yeon’gu 2023, 36, 289–313. [Google Scholar] [CrossRef]
- Bouihi, B.; Bousselham, A.; Aoula, E.S.; Ennibras, F.; Deraoui, A. Prediction of Higher Education Student Dropout based on Regularized Regression Models. Eng. Technol. Appl. Sci. Res. 2024, 14, 17811–17815. [Google Scholar] [CrossRef]
- Gretchen Gaye, C.E.; Ramírez, G.M.; Jaime Díaz, F.M. Towards Educational Sustainability: An AI System for Identifying and Preventing Student Dropout. Rev. Iberoam. Tecnol. Aprendiz. 2024, 19, 100–110. [Google Scholar] [CrossRef]
- Saparkhojayev, N.; Tashkenbayev, Y.; Zholayeva, L. Analyzing Big Data Using Machine Learning to Identify Factors Affecting College Students Dropout Risk. Univ. Pap. 2024, 3, 300–304. [Google Scholar] [CrossRef]
- Adimulam, T. Integrating predictive analytics and machine learning within sap erp hcm ecc6: Enhancing strategic human capital management through intelligent data insight. World J. Adv. Res. Rev. 2019, 3, 072–080. [Google Scholar] [CrossRef]
- Alcolea, J.J.; Ortigosa, A.; Carro, R.M.; Blanco, O.J. Best Practices in Dropout Prediction: Experience-Based Recommendations for Institutional Implementation. In Early Warning Systems and Targeted Interventions for Student Success in Online Courses; Advances in Educational Technologies and Instructional Design (AETID); IGI Global: Hershey, PA, USA, 2020; pp. 301–323. [Google Scholar] [CrossRef]
- Oreshin, S.A.; Filchenkov, A.; Kozlova, D.; Petrusha, P.; Lisitsyna, L.S.; Panfilov, A.; Glukhov, I.; Krasheninnikov, E.; Buraya, K.I. The Use of Students’ Digital Portraits in Creating Smart Higher Education: A Case Study of the AI Benefits in Analyzing Educational and Social Media Data. In Smart Education and e-Learning 2020; Springer: Singapore, 2020; pp. 233–243. [Google Scholar] [CrossRef]
- Silva, L.H.N.D.; Chounta, I.A.; Rodríguez-Triana, M.J.; Roa, E.R.; Gramberg, A.; Valk, A. Toward an Institutional Analytics Agenda for Addressing Student Dropout in Higher Education: An Academic Stakeholders’ Perspective. J. Learn. Anal. 2022, 9, 179–201. [Google Scholar] [CrossRef]
- Albadri, A.H.M. Data Virtualization Design Model for Near Real Time Decision Making in Business Intelligence Environment. Ph.D. Thesis, Universiti Utara Malaysia, Sintok, Malaysia, 2017. [Google Scholar]
- Purnomo, R.; Priatna, W.; Putra, T.D. Implementasi Big Data Analytical Untuk Perguruan Tinggi Menggunakan Machine Learning. J. Inform. Inf. Secur. 2021, 2, 77–88. [Google Scholar] [CrossRef]
- Qin, A.; Boicu, M. EduBoost: An Interpretable Grey-Box Model Approach to Identify and Prevent Student Failure and Dropout. In Proceedings of the Frontiers in Education Conference, College Station, TX, USA, 18–21 October 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Delen, D.; Davazdahemami, B.; Dezfouli, E.R. Predicting and Mitigating Freshmen Student Attrition: A Local-Explainable Machine Learning Framework. Inf. Syst. Front. 2023, 26, 641–662. [Google Scholar] [CrossRef]
- Leo, J. Early-Warning Dropout Visualization Tool for Secondary Schools: Using Machine Learning, QR Code, GIS and Mobile Application Techniques. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 655–663. [Google Scholar] [CrossRef]
- Simeunović, V.; Milić, S.; Ratković-Obradović, S. Educational Data Mining in Higher Education: Building a Predictive Model for Retaining University Graduates as Master’s Students. J. Coll. Stud. Retent. Res. Theory Pract. 2024, 26. Advance online publication. [Google Scholar] [CrossRef]
Academic Database | Keywords |
---|---|
Google Scholar | ((“school dropout”) AND (“higher education”) AND (“business intelligence” OR “artificial intelligence” OR “machine learning”)):AB |
Scopus | ALL ( ( ( “school dropout” ) AND ( “higher education” ) AND ( “business intelligence” OR “artificial intelligence” OR “machine learning” ) ) ) |
Inclusion Criteria | Exclusion Criteria |
---|---|
Articles published in English or Spanish | Articles published in languages other than English or Spanish |
Studies explicitly using Business Intelligence (BI), machine learning, or data mining tools for dropout prediction and prevention | Studies without clear use or implementation details of BI, machine learning, or data mining tools |
Empirical studies based on real-world educational data | Purely theoretical studies or conceptual papers without empirical validation |
Peer-reviewed journal articles, conference proceedings, book chapters, and validated academic theses | Non-peer-reviewed sources, short communications, editorials, abstracts, or opinion pieces |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Córdova-Esparza, D.-M.; Terven, J.; Romero-González, J.-A.; Córdova-Esparza, K.-E.; López-Martínez, R.-E.; García-Ramírez, T.; Chaparro-Sánchez, R. Predicting and Preventing School Dropout with Business Intelligence: Insights from a Systematic Review. Information 2025, 16, 326. https://doi.org/10.3390/info16040326
Córdova-Esparza D-M, Terven J, Romero-González J-A, Córdova-Esparza K-E, López-Martínez R-E, García-Ramírez T, Chaparro-Sánchez R. Predicting and Preventing School Dropout with Business Intelligence: Insights from a Systematic Review. Information. 2025; 16(4):326. https://doi.org/10.3390/info16040326
Chicago/Turabian StyleCórdova-Esparza, Diana-Margarita, Juan Terven, Julio-Alejandro Romero-González, Karen-Edith Córdova-Esparza, Rocio-Edith López-Martínez, Teresa García-Ramírez, and Ricardo Chaparro-Sánchez. 2025. "Predicting and Preventing School Dropout with Business Intelligence: Insights from a Systematic Review" Information 16, no. 4: 326. https://doi.org/10.3390/info16040326
APA StyleCórdova-Esparza, D.-M., Terven, J., Romero-González, J.-A., Córdova-Esparza, K.-E., López-Martínez, R.-E., García-Ramírez, T., & Chaparro-Sánchez, R. (2025). Predicting and Preventing School Dropout with Business Intelligence: Insights from a Systematic Review. Information, 16(4), 326. https://doi.org/10.3390/info16040326