Machine Learning for Smart Irrigation in Agriculture: How Far along Are We?
Abstract
:1. Introduction
2. Material, Methods and Taxonomy
- A physical layer: it consists of sensors, actuators, processing and storage units interconnected through a communication network.
- A processing layer: it consists of algorithms used to analyze available knowledge, location, crops, and to provide outcomes depending on the requirement of the decision layer.
- Datasets and data sources: historical data locally or remotely stored to improve the processing layer’s ability to model the problem defined by the decision layer.
- Decisions layer: the set of services provided to the end user to reach the specific goal. Experts provide specific rules that define actions in response to the processing layer outcomes.
3. The Physical Layer
4. The Processing Layer
4.1. Traditional Machine Learning Methods
4.2. Deep Learning Methods
5. The Datasets
5.1. Soil Moisture
5.1.1. ISMN
5.1.2. CAF Dataset
5.1.3. MSMMN Dataset
5.1.4. Data Quality Control and Interpretation
5.2. Weather
5.2.1. Open-Meteo
5.2.2. OpenWeather Map
5.3. The Missing Dataset
6. Decisions Layer
7. Discussion and Open Challenges
8. New Research Horizons
9. Conclusions
Funding
Conflicts of Interest
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; FAO: Rome, Italy, 2021. [Google Scholar]
- Gamal, Y.; Soltan, A.; Said, L.A.; Madian, A.H.; Radwan, A.G. Smart Irrigation Systems: Overview. IEEE Access 2023. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Capraro, F.; Tosetti, S.; Rossomando, F.; Mut, V.; Vita Serman, F. Web-based system for the remote monitoring and management of precision irrigation: A case study in an arid region of Argentina. Sensors 2018, 18, 3847. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- GS Campos, N.; Rocha, A.R.; Gondim, R.; Coelho da Silva, T.L.; Gomes, D.G. Smart & green: An internet-of-things framework for smart irrigation. Sensors 2019, 20, 190. [Google Scholar] [CrossRef]
- Altalak, M.; Ammad uddin, M.; Alajmi, A.; Rizg, A. Smart agriculture applications using deep learning technologies: A survey. Appl. Sci. 2022, 12, 5919. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Vallejo-Gómez, D.; Osorio, M.; Hincapié, C.A. Smart Irrigation Systems in Agriculture: A Systematic Review. Agronomy 2023, 13, 342. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Sayed, S.; Abdoulhalik, A.; Moutari, S.; Oyedele, L. Applications of machine learning to water resources management: A review of present status and future opportunities. J. Clean. Prod. 2024, 441, 140715. [Google Scholar] [CrossRef]
- Hamami, L.; Nassereddine, B. Application of wireless sensor networks in the field of irrigation: A review. Comput. Electron. Agric. 2020, 179, 105782. [Google Scholar] [CrossRef]
- Jihani, N.; Kabbaj, M.N.; Benbrahim, M. Sensor fault detection and isolation for smart irrigation wireless sensor network based on parity space. Int. J. Electr. Comput. Eng. 2023, 13, 1463. [Google Scholar] [CrossRef]
- Ahansal, Y.; Bouziani, M.; Yaagoubi, R.; Sebari, I.; Sebari, K.; Kenny, L. Towards smart irrigation: A literature review on the use of geospatial technologies and machine learning in the management of water resources in arboriculture. Agronomy 2022, 12, 297. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating soil moisture content under maize coverage using UAV multimodal data by machine learning algorithms. J. Hydrol. 2023, 617, 129086. [Google Scholar] [CrossRef]
- Lu, F.; Sun, Y.; Hou, F. Using UAV visible images to estimate the soil moisture of steppe. Water 2020, 12, 2334. [Google Scholar] [CrossRef]
- Moradi, S.; Bokani, A.; Hassan, J. UAV-based smart agriculture: A review of UAV sensing and applications. In Proceedings of the 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, 30 November–2 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 181–184. [Google Scholar]
- Guo, J.; Bai, Q.; Guo, W.; Bu, Z.; Zhang, W. Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Comput. Electron. Agric. 2022, 193, 106670. [Google Scholar] [CrossRef]
- Guan, Y.; Grote, K. Assessing the Potential of UAV-Based Multispectral and Thermal Data to Estimate Soil Water Content Using Geophysical Methods. Remote Sens. 2023, 16, 61. [Google Scholar] [CrossRef]
- Niu, H.; Hollenbeck, D.; Zhao, T.; Wang, D.; Chen, Y. Evapotranspiration estimation with small UAVs in precision agriculture. Sensors 2020, 20, 6427. [Google Scholar] [CrossRef]
- Reddy, V.S.; Harivardhagini, S.; Sreelakshmi, G. IoT and Cloud Based Sustainable Smart Irrigation System. E3S Web Conf. 2024, 472, 01026. [Google Scholar] [CrossRef]
- Abdikadir, N.M.; Abi Hassan, A.; Abdullahi, H.O.; Rashid, R.A. Smart Irrigation System. Int. J. Electr. Electron. Eng. 2023, 10, 224–234. [Google Scholar] [CrossRef]
- Puliafito, C.; Mingozzi, E.; Longo, F.; Puliafito, A.; Rana, O. Fog computing for the internet of things: A survey. ACM Trans. Internet Technol. (TOIT) 2019, 19, 1–41. [Google Scholar] [CrossRef]
- Cordeiro, M.; Markert, C.; Araújo, S.S.; Campos, N.G.; Gondim, R.S.; da Silva, T.L.C.; da Rocha, A.R. Towards Smart Farming: Fog-enabled intelligent irrigation system using deep neural networks. Future Gener. Comput. Syst. 2022, 129, 115–124. [Google Scholar] [CrossRef]
- Motamedi, B.; Villányi, B. Design of a Smart Irrigation using wireless communication protocols in Greenhouse. In Proceedings of the 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo), Budapest, Hungary, 21–22 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 000179–000184. [Google Scholar]
- Yasin, A.; Delaney, J.; Cheng, C.T.; Pang, T.Y. The Design and Implementation of an IoT Sensor-Based Indoor Air Quality Monitoring System Using Off-the-Shelf Devices. Appl. Sci. 2022, 12, 9450. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gautam, A.; Singh, V. Parametric Versus Non-Parametric Time Series Forecasting Methods: A Review. J. Eng. Sci. Technol. Rev. 2020, 13, 165–171. [Google Scholar] [CrossRef]
- Mishra, P.; Somkunwar, R.K. Smart Irrigation with Water Level Indicators Using Logistic Regression. In Proceedings of the 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 26–28 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Kocian, A.; Carmassi, G.; Cela, F.; Chessa, S.; Milazzo, P.; Incrocci, L. IoT based dynamic Bayesian prediction of crop evapotranspiration in soilless cultivations. Comput. Electron. Agric. 2023, 205, 107608. [Google Scholar] [CrossRef]
- Alomar, B.; Alazzam, A. A smart irrigation system using IoT and fuzzy logic controller. In Proceedings of the 2018 Fifth HCT Information Technology Trends (ITT), Dubai, United Arab Emirates, 28–29 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 175–179. [Google Scholar]
- Tace, Y.; Tabaa, M.; Elfilali, S.; Leghris, C.; Bensag, H.; Renault, E. Smart irrigation system based on IoT and machine learning. Energy Rep. 2022, 8, 1025–1036. [Google Scholar] [CrossRef]
- Togneri, R.; dos Santos, D.F.; Camponogara, G.; Nagano, H.; Custodio, G.; Prati, R.; Fernandes, S.; Kamienski, C. Soil moisture forecast for smart irrigation: The primetime for machine learning. Expert Syst. Appl. 2022, 207, 117653. [Google Scholar] [CrossRef]
- Premkumar, S.; Sigappi, A. IoT-enabled edge computing model for smart irrigation system. J. Intell. Syst. 2022, 31, 632–650. [Google Scholar] [CrossRef]
- Ponraj, A.S.; Vigneswaran, T. Daily evapotranspiration prediction using gradient boost regression model for irrigation planning. J. Supercomput. 2020, 76, 5732–5744. [Google Scholar] [CrossRef]
- Kumar, G.K.; Bangare, M.L.; Bangare, P.M.; Kumar, C.R.; Raj, R.; Arias-Gonzáles, J.L.; Omarov, B.; Mia, M.S. Internet of things sensors and support vector machine integrated intelligent irrigation system for agriculture industry. Discov. Sustain. 2024, 5, 6. [Google Scholar] [CrossRef]
- Al-Faydi, S.N.; Al-Talb, H.N. IoT and Artificial Neural Network-Based Water Control for Farming Irrigation System. In Proceedings of the 2022 2nd International Conference on Computing and Machine Intelligence (ICMI), Istanbul, Turkey, 15–16 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Chaudhry, R.; Rishiwal, V.; Yadav, P.; Singh, K.R.; Yadav, M. Automatic Smart Irrigation Method for Agriculture Data. In Towards the Integration of IoT, Cloud and Big Data: Services, Applications and Standards; Springer: Berlin/Heidelberg, Germany, 2023; pp. 57–73. [Google Scholar]
- Patil, C.; Aghav, S.; Sangale, S.; Patil, S.; Aher, J. Smart irrigation using decision tree. In Proceedings of theInternational Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 737–744. [Google Scholar]
- Sami, M.; Khan, S.Q.; Khurram, M.; Farooq, M.U.; Anjum, R.; Aziz, S.; Qureshi, R.; Sadak, F. A deep learning-based sensor modeling for smart irrigation system. Agronomy 2022, 12, 212. [Google Scholar] [CrossRef]
- Hegazi, E.H.; Yang, L.; Huang, J. A convolutional neural network algorithm for soil moisture prediction from Sentinel-1 SAR images. Remote Sens. 2021, 13, 4964. [Google Scholar] [CrossRef]
- Seo, M.G.; Shin, H.S.; Tsourdos, A. Soil moisture retrieval from airborne multispectral and infrared images using Convolutional Neural Network. IFAC-PapersOnLine 2020, 53, 15852–15857. [Google Scholar] [CrossRef]
- Albuquerque, C.K.; Polimante, S.; Torre-Neto, A.; Prati, R.C. Water spray detection for smart irrigation systems with Mask R-CNN and UAV footage. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 236–240. [Google Scholar]
- Singh, N.; Ajaykumar, K.; Dhruw, L.; Choudhury, B. Optimization of irrigation timing for sprinkler irrigation system using convolutional neural network-based mobile application for sustainable agriculture. Smart Agric. Technol. 2023, 5, 100305. [Google Scholar] [CrossRef]
- Deforce, B.; Baesens, B.; Diels, J.; Asensio, E.S. Harnessing the power of transformers and data fusion in smart irrigation. Appl. Soft Comput. 2024, 152, 111246. [Google Scholar] [CrossRef]
- Gao, P.; Xie, J.; Yang, M.; Zhou, P.; Chen, W.; Liang, G.; Chen, Y.; Han, X.; Wang, W. Improved soil moisture and electrical conductivity prediction of citrus orchards based on IOT using Deep Bidirectional LSTM. Agriculture 2021, 11, 635. [Google Scholar] [CrossRef]
- Bai, T.; Tahmasebi, P. Graph neural network for groundwater level forecasting. J. Hydrol. 2023, 616, 128792. [Google Scholar] [CrossRef]
- Kurtulmuş, E.; Arslan, B.; Kurtulmuş, F. Deep learning for proximal soil sensor development towards smart irrigation. Expert Syst. Appl. 2022, 198, 116812. [Google Scholar] [CrossRef]
- Kashyap, P.K.; Kumar, S.; Jaiswal, A.; Prasad, M.; Gandomi, A.H. Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network. IEEE Sens. J. 2021, 21, 17479–17491. [Google Scholar] [CrossRef]
- Medsker, L.; Jain, L.C. Recurrent Neural Networks: Design and Applications; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Kanmani, R.; Muthulakshmi, S.; Subitcha, K.S.; Sriranjani, M.; Radhapoorani, R.; Suagnya, N. Modern irrigation system using convolutional neural network. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 1, pp. 592–597. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Dong, G.; Tang, M.; Wang, Z.; Gao, J.; Guo, S.; Cai, L.; Gutierrez, R.; Campbel, B.; Barnes, L.E.; Boukhechba, M. Graph neural networks in IoT: A survey. ACM Trans. Sens. Netw. 2023, 19, 1–50. [Google Scholar] [CrossRef]
- Wallace, J.; Batchelor, C. Managing water resources for crop production. Philos. Trans. R. Soc. B: Biol. Sci. 1997, 352, 937–947. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, T.; Lü, H.; Shi, J.; Cosh, M.H.; Ji, D.; Jiang, L.; Cui, Q.; Lu, H.; Yang, K.; et al. Assessment of 24 soil moisture datasets using a new in situ network in the Shandian River Basin of China. Remote Sens. Environ. 2022, 271, 112891. [Google Scholar] [CrossRef]
- Dorigo, W.; Gruber, A.; De Jeu, R.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Robock, A.; Qiu, S.; Entin, J.K. Optimal design of surface networks for observation of soil moisture. J. Geophys. Res. Atmos. 1999, 104, 19743–19749. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E.; et al. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Robock, A.; Vinnikov, K.Y.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Liu, S.; Namkhai, A. The global soil moisture data bank. Bull. Am. Meteorol. Soc. 2000, 81, 1281–1300. [Google Scholar] [CrossRef]
- Robock, A.; Mu, M.; Vinnikov, K.; Trofimova, I.V.; Adamenko, T.I. Forty-five years of observed soil moisture in the Ukraine: No summer desiccation (yet). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Dorigo, W.; Van Oevelen, P.; Wagner, W.; Drusch, M.; Mecklenburg, S.; Robock, A.; Jackson, T. A new international network for in situ soil moisture data. Eos, Trans. Am. Geophys. Union 2011, 92, 141–142. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Gasch, C.; Brown, D.; Campbell, C.; Cobos, D.; Brooks, E.; Chahal, M.; Poggio, M. A field-scale sensor network data set for monitoring and modeling the spatial and temporal variation of soil water content in a dryland agricultural field. Water Resour. Res. 2017, 53, 10878–10887. [Google Scholar] [CrossRef]
- Smith, A.B.; Walker, J.P.; Western, A.W.; Young, R.; Ellett, K.; Pipunic, R.; Grayson, R.; Siriwardena, L.; Chiew, F.H.; Richter, H. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Dorigo, W.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiova, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–21. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Cid-Escobar, D.; Folch, A.; Ferrer, N.; Katuva, J.; Sanchez-Vila, X. An assessment tool to improve rural groundwater access: Integrating hydrogeological modelling with socio-technical factors. Sci. Total Environ. 2024, 912, 168864. [Google Scholar] [CrossRef]
- Tolomio, M.; Casa, R. Dynamic crop models and remote sensing irrigation decision support systems: A review of water stress concepts for improved estimation of water requirements. Remote Sens. 2020, 12, 3945. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Sun, Z.; Di, L. A Review of Smart Irrigation Decision Support Systems. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- You, Y.; Wang, Y.; Fan, X.; Dai, Q.; Yang, G.; Wang, W.; Chen, D.; Hu, X. Progress in joint application of crop models and hydrological models. Agric. Water Manag. 2024, 295, 108746. [Google Scholar] [CrossRef]
- Gasser, L.; Le Gall, F.; Abily, M. Water efficiency in smart cities: Optimising irrigation for public green spaces. LHB 2024, 110, 2294076. [Google Scholar] [CrossRef]
- Abioye, A.E.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Mohammed, O.O.; Otuoze, A.O.; Oleolo, I.O.; Mayowa, A. Model based predictive control strategy for water saving drip irrigation. Smart Agric. Technol. 2023, 4, 100179. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Argente Garcia, J.E.; Skarmeta Gomez, A.F. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 2022, 71, 1396–1416. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A.; Brouziyne, Y. Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agric. Water Manag. 2021, 245, 106625. [Google Scholar] [CrossRef]
- Champness, M.; Vial, L.; Ballester, C.; Hornbuckle, J. Evaluating the Performance and Opportunity Cost of a Smart-Sensed Automated Irrigation System for Water-Saving Rice Cultivation in Temperate Australia. Agriculture 2023, 13, 903. [Google Scholar] [CrossRef]
- Liao, R.; Zhang, S.; Zhang, X.; Wang, M.; Wu, H.; Zhangzhong, L. Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept. Agric. Water Manag. 2021, 245, 106632. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T.M. Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal. Agric. Water Manag. 2022, 263, 107480. [Google Scholar] [CrossRef]
- Risheh, A.; Jalili, A.; Nazerfard, E. Smart Irrigation IoT solution using transfer learning for neural networks. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 342–349. [Google Scholar]
- Routis, G.; Roussaki, I. Low Power IoT Electronics in Precision Irrigation. Smart Agric. Technol. 2023, 5, 100310. [Google Scholar] [CrossRef]
- Froiz-Míguez, I.; Lopez-Iturri, P.; Fraga-Lamas, P.; Celaya-Echarri, M.; Blanco-Novoa, Ó.; Azpilicueta, L.; Falcone, F.; Fernández-Caramés, T.M. Design, implementation, and empirical validation of an IoT smart irrigation system for fog computing applications based on Lora and Lorawan sensor nodes. Sensors 2020, 20, 6865. [Google Scholar] [CrossRef] [PubMed]
- Zia, H.; Rehman, A.; Harris, N.R.; Fatima, S.; Khurram, M. An experimental comparison of IOT-based and traditional irrigation scheduling on a flood-irrigated subtropical lemon farm. Sensors 2021, 21, 4175. [Google Scholar] [CrossRef]
- Alves, R.G.; Maia, R.F.; Lima, F. Development of a Digital Twin for smart farming: Irrigation management system for water saving. J. Clean. Prod. 2023, 388, 135920. [Google Scholar] [CrossRef]
- Manocha, A.; Sood, S.K.; Bhatia, M. IoT-digital twin-inspired smart irrigation approach for optimal water utilization. Sustain. Comput. Inform. Syst. 2024, 41, 100947. [Google Scholar] [CrossRef]
- Saikai, Y.; Peake, A.; Chenu, K. Deep reinforcement learning for irrigation scheduling using high-dimensional sensor feedback. arXiv 2023, arXiv:2301.00899. [Google Scholar] [CrossRef]
- Jin, M.; Koh, H.Y.; Wen, Q.; Zambon, D.; Alippi, C.; Webb, G.I.; King, I.; Pan, S. A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. arXiv 2023, arXiv:2307.03759. [Google Scholar]
- Sharma, A.; Singh, S.; Ratna, S. Graph Neural Network Operators: A Review. Multimed. Tools Appl. 2024, 83, 23413–23436. [Google Scholar] [CrossRef]
- Yi, K.; Zhang, Q.; Fan, W.; He, H.; Hu, L.; Wang, P.; An, N.; Cao, L.; Niu, Z. FourierGNN: Rethinking multivariate time series forecasting from a pure graph perspective. Adv. Neural Inf. Process. Syst. 2024, 36. [Google Scholar]
- Li, Z.L.; Zhang, G.W.; Yu, J.; Xu, L.Y. Dynamic graph structure learning for multivariate time series forecasting. Pattern Recognit. 2023, 138, 109423. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 11121–11128. [Google Scholar] [CrossRef]
- Miller, J.A.; Aldosari, M.; Saeed, F.; Barna, N.H.; Rana, S.; Arpinar, I.B.; Liu, N. A survey of deep learning and foundation models for time series forecasting. arXiv 2024, arXiv:2401.13912. [Google Scholar]
- Gu, A.; Goel, K.; Ré, C. Efficiently modeling long sequences with structured state spaces. arXiv 2021, arXiv:2111.00396. [Google Scholar]
- Lin, L.; Li, Z.; Li, R.; Li, X.; Gao, J. Diffusion models for time-series applications: A survey. Front. Inf. Technol. Electron. Eng. 2023, 25, 1–23. [Google Scholar] [CrossRef]
- Meijer, C.; Chen, L.Y. The Rise of Diffusion Models in Time-Series Forecasting. arXiv 2024, arXiv:2401.03006. [Google Scholar]
- Park, M.H.; Chakraborty, S.; Vuong, Q.D.; Noh, D.H.; Lee, J.W.; Lee, J.U.; Choi, J.H.; Lee, W.J. Anomaly Detection Based on Time Series Data of Hydraulic Accumulator. Sensors 2022, 22, 9428. [Google Scholar] [CrossRef]
- Ehrhart, M.; Resch, B.; Havas, C.; Niederseer, D. A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological Sensor Data. Sensors 2022, 22, 5969. [Google Scholar] [CrossRef]
- Benameur, R.; Dahane, A.; Kechar, B.; Benyamina, A.E.H. An Innovative Smart and Sustainable Low-Cost Irrigation System for Anomaly Detection Using Deep Learning. Sensors 2024, 24, 1162. [Google Scholar] [CrossRef]
- Cheng, W.; Ma, T.; Wang, X.; Wang, G. Anomaly detection for internet of things time series data using generative adversarial networks with attention mechanism in smart agriculture. Front. Plant Sci. 2022, 13, 890563. [Google Scholar] [CrossRef]
Works | Method | Inputs (Actual) | Outputs (Estimated) | Performance |
---|---|---|---|---|
[28] | logistic regression | soil moisture weather data type of crop | Irrigation needed Probability | NA |
[29] | Bayesian breakModels | temperature global radiation crop weight | ET | RMSE = 0.11 |
[30] | fuzzy controller | soil moisture air temperature | required amount of water | NA |
[31] | K-Nearest Neighbors | soil humidity air temperature air humidity rain | pump act/deact | acc = 0.98 |
[32] | Decision trees | crop types soil moisture weather conditions weather forecast soil water profile | soil moisture | RMSE = 0.48 |
[33] | gradient boosting + kmeans | Weather Forecasting Soil Moisture soil temperature Light Radiation Temperature Humidity | soil moisture | acc = 0.97 MSE = 0.20 |
[34] | gradient boosting regression | weather data | ET | RMSE = 0.16 |
[35] | K-means + SVM | soil moisture Humidity Temperature Pressure Luminosity | turn on/off sprinkler | acc = 0.98 |
[36] | Artificial Neural Network | soil moisture air Humidity air Temperature | pump act/deact | acc = 0.97 |
[37] | Random Forest | Soil moisture | pump act/deact | acc = 0.98 |
Works | Method | Input (Actual) | Output (Estimated) | Performance |
---|---|---|---|---|
[39] | LSTM | temperature, humidity, and soil moisture | temperature, humidity, soil moisture | RMSE = 2.35% |
[40] | CNN | field’s images | soil moisture | MAE = 1.44% RMSE = 2.74% |
[41] | CNN | field’s images | soil moisture | RMSE = 2.01% |
[42] | Mask-RCNN | field’s images | soil moisture | Validation loss = 0.8 |
[43] | CNN | field’s images | soil moisture | acc = 0.97 |
[44] | TFT | Multivariate environmental Sources | soil moisture | MAE = 2.75 RMSE = 3.34 |
[45] | Bid-LSTM | air temperature, air humidity, wind speed, precipitation data, Soil moisture, electrical conductivity, temperature | soil moisture, electrical conductivity | MAE = [0.79, 4.32] RMSE = [1.41, 5.03], MAE = [0.68, 4.38] RMSE = [1.12, 6.52] |
[46] | GNN | Ground Water | Ground Water | MAE = 0.67 RMSE = 1.14 |
[47] | ResNet GoogleNet | Images | Texture-water class | acc = 0.99 |
[48] | LSTM | volumetric soil moisture, soil temperature, climate data, and rainfall) | volumetric soil moisture | RMSE = 1.2% |
Dataset | Coverage | No. of Site | Time Interval | Sensors Depth | Weather | Additional Data |
---|---|---|---|---|---|---|
ISMN [63,64] https://ismn.earth/en/ Last access: 19 May 2024 | Variable | ∼450 | Variable | Variable | Variable | Variable |
CAF [65] https://goo.gl/JYAIT3 Last access: 19 May 2024 | <1 | 42 | 2007–2016 | up to 150 cm | Yes | Field Info |
MSMMN [66] https://www.oznet.org.au Last access: 19 May 2024 | 82,000 | 38 | 2001–current | up to 90 cm | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del-Coco, M.; Leo, M.; Carcagnì, P. Machine Learning for Smart Irrigation in Agriculture: How Far along Are We? Information 2024, 15, 306. https://doi.org/10.3390/info15060306
Del-Coco M, Leo M, Carcagnì P. Machine Learning for Smart Irrigation in Agriculture: How Far along Are We? Information. 2024; 15(6):306. https://doi.org/10.3390/info15060306
Chicago/Turabian StyleDel-Coco, Marco, Marco Leo, and Pierluigi Carcagnì. 2024. "Machine Learning for Smart Irrigation in Agriculture: How Far along Are We?" Information 15, no. 6: 306. https://doi.org/10.3390/info15060306
APA StyleDel-Coco, M., Leo, M., & Carcagnì, P. (2024). Machine Learning for Smart Irrigation in Agriculture: How Far along Are We? Information, 15(6), 306. https://doi.org/10.3390/info15060306