Image Stitching of Low-Resolution Retinography Using Fundus Blur Filter and Homography Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Method
2.1. Synthetic Dataset
2.2. Proposed Method
2.2.1. Data Augmentation
Algorithm 1. Fundus_Blur_Filter |
|
2.2.2. Feature Extraction
2.2.3. Feature Correlation
2.2.4. Regression
2.2.5. Image Stitching
2.3. Evaluation Metrics
2.4. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. World Report on Vision; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Neto, A.; Camara, J.; Cunha, A. Evaluations of deep learning approaches for glaucoma screening using retinal images from mobile device. Sensors 2022, 22, 1449. [Google Scholar] [CrossRef]
- Pachade, S.; Porwal, P.; Thulkar, D.; Kokare, M.; Deshmukh, G.; Sahasrabuddhe, V.; Giancardo, L.; Quellec, G.; Mériaudeau, F. Retinal fundus multi-disease image dataset (RFMiD): A dataset for multi-disease detection research. Data 2021, 6, 14. [Google Scholar] [CrossRef]
- Resnikoff, S.; Lansingh, V.C.; Washburn, L.; Felch, W.; Gauthier, T.M.; Taylor, H.R.; Eckert, K.; Parke, D.; Wiedemann, P. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): Will we meet the needs? Br. J. Ophthalmol. 2020, 104, 588–592. [Google Scholar] [CrossRef]
- Abdulhussein, D.; Abdul Hussein, M. WHO Vision 2020: Have we done it? Ophthalmic Epidemiol. 2023, 30, 331–339. [Google Scholar] [CrossRef]
- Pihlblad, M.S.; Stockslager, S. D-EYE: A portable and inexpensive option for fundus photography and videography in the pediatric population with telemedicine potential. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2016, 20, e21. [Google Scholar] [CrossRef]
- Barritt, N.; Pilon, L.; MacLean, A.; Lin, A.; Cole, A.; Faruq, I.; Lakshminarayanan, V. Development and testing of a stabilization and image processing system for improvement of mobile fundus camera image quality. In Proceedings of the Novel Optical Systems, Methods, and Applications XXIII, SPIE, Virtual, 24 August–4 September 2020; Volume 11483, pp. 79–88. [Google Scholar]
- Correia, T.V.S. Detection and Mosaicing through Deep Learning Models for Low-Quality Retinal Images. Master’s Thesis, School of Technology and Management of the Polytechnic Institute of Leiria, Leiria, Portugal, 2023. Available online: https://iconline.ipleiria.pt/handle/10400.8/8892 (accessed on 7 August 2023).
- Liu, J.; Li, X.; Wei, Q.; Xu, J.; Ding, D. Semi-supervised keypoint detector and descriptor for retinal image matching. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 593–609. [Google Scholar]
- Hu, R.; Chalakkal, R.; Linde, G.; Dhupia, J.S. Multi-image stitching for smartphone-based retinal fundus stitching. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, Sapporo, Japan, 11–15 July 2022; pp. 179–184. [Google Scholar]
- Sedaghat, A.; Mokhtarzade, M.; Ebadi, H. Uniform Robust Scale-Invariant Feature Matching for Optical Remote Sensing Images. IEEE Trans. Geosci. Remote. Sens. 2011, 49, 4516–4527. [Google Scholar] [CrossRef]
- Nie, L.; Lin, C.; Liao, K.; Liu, M.; Zhao, Y. A view-free image stitching network based on global homography. J. Vis. Commun. Image Represent. 2020, 73, 102950. [Google Scholar] [CrossRef]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. Deep image homography estimation. arXiv 2016, arXiv:1606.03798. [Google Scholar]
- Huang, R.; Chang, Q.; Zhang, Y. Unsupervised Oral Endoscope Image Stitching Algorithm. J. Shanghai Jiaotong Univ. Sci. 2024, 29, 81–90. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312. [Google Scholar]
- Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE, San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 539–546. [Google Scholar]
- Chicco, D. Siamese neural networks: An overview. Artif. Neural Netw. 2021, 2190, 73–94. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kang, L.; Wei, Y.; Xie, Y.; Jiang, J.; Guo, Y. Combining convolutional neural network and photometric refinement for accurate homography estimation. IEEE Access 2019, 7, 109460–109473. [Google Scholar] [CrossRef]
- O’shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Liu, S.; Lu, Y.; Jiang, H.; Ye, N.; Wang, C.; Zeng, B. Unsupervised global and local homography estimation with motion basis learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 7885–7899. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X. STN-Homography: Direct estimation of homography parameters for image pairs. Appl. Sci. 2019, 9, 5187. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z. Review on image-stitching techniques. Multimed. Syst. 2020, 26, 413–430. [Google Scholar] [CrossRef]
- Jagalingam, P.; Hegde, A.V. A review of quality metrics for fused image. Aquat. Procedia 2015, 4, 133–142. [Google Scholar] [CrossRef]
- Dissanayake, V.; Herath, S.; Rasnayaka, S.; Seneviratne, S.; Vidanaarachchi, R.; Gamage, C. Quantitative and Qualitative Evaluation of Performance and Robustness of Image Stitching Algorithms. In Proceedings of the 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, Australia, 23–25 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Zhu, M.; Li, C.; He, X.; Xiao, X. Unsupervised deep learning image stitching model assisted with infrared images. In Proceedings of the International Conference on Algorithm, Imaging Processing, and Machine Vision (AIPMV 2023), Qingdao, China, 15–17 September 2023; SPIE: Bellingham, WA, USA, 2024; Volume 12969, pp. 249–255. [Google Scholar]
- Duan, H.; Min, X.; Sun, W.; Zhu, Y.; Zhang, X.P.; Zhai, G. Attentive deep image quality assessment for omnidirectional stitching. IEEE J. Sel. Top. Signal Process. 2023, 17, 1150–1164. [Google Scholar] [CrossRef]
- Ni, J.; Li, Y.; Ke, C.; Zhang, Z.; Cao, W.; Yang, S.X. A Fast Unsupervised Image Stitching Model Based on Homography Estimation. IEEE Sens. J. 2024, 24, 29452–29467. [Google Scholar] [CrossRef]
- The GIMP Development Team. GIMP: GNU Image Manipulation Program. Version 2.10.36. The GIMP Development Team. 2023. Available online: https://www.gimp.org (accessed on 10 February 2024).
- Hernandez-Matas, C.; Zabulis, X.; Triantafyllou, A.; Anyfanti, P.; Douma, S.; Argyros, A.A. FIRE: Fundus image registration dataset. Model. Artif. Intell. Ophthalmol. 2017, 1, 16–28. [Google Scholar] [CrossRef]
Parameter | Description | Variation |
---|---|---|
image_size | Size of the image | 128 |
image_center | Center of the image | (64,64) |
ellipse_offset_x | Random integer offset in the X-axis | −25 to 25 |
ellipse_offset_y | Random integer offset in the Y-axis | −25 to 25 |
circle_offset_x | Random integer offset in the X-axis | −40 to 40 |
circle_offset_y | Random integer offset in the Y-axis | −40 to 40 |
ellipse_axis_range_x | Random integer X-axis of the ellipse | 38 to 42 |
ellipse_axis_range_y | Random integer Y-axis of the ellipse | 35 to 42 |
ellipse_angle_range | Random integer angle of the ellipse | 0° to 360° |
blur_kernel | Size of the blur kernel | (51, 51) |
blur_sigma_range | Range of sigma for Gaussian blur | 20 to 30 |
center_threshold_range | Range of center offset | −5 to 5 |
Dataset | Metric | Average | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
D-EYE | PSNR↑ | 18.18 | 2.56 | 13.00 | 18.67 | 23.09 |
SSIM↑ | 0.89 | 0.03 | 0.77 | 0.83 | 0.89 | |
RMSE↓ | 4.89 | 0.33 | 4.09 | 4.91 | 5.81 | |
Fire P | PSNR↑ | 19.01 | 2.60 | 15.26 | 18.33 | 25.85 |
SSIM↑ | 0.80 | 0.04 | 0.71 | 0.81 | 0.90 | |
RMSE↓ | 51.52 | 13.94 | 22.52 | 53.52 | 76.22 | |
Fire P crop | PSNR↑ | 17.84 | 2.36 | 14.11 | 17.15 | 22.71 |
SSIM↑ | 0.85 | 0.03 | 0.75 | 0.85 | 0.92 | |
RMSE↓ | 58.53 | 14.64 | 32.29 | 61.27 | 86.95 |
Dataset | Metric | Average | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
D-EYE | PSNR↑ | 22.9 | 3.29 | 18.04 | 22.69 | 32.4 |
SSIM↑ | 0.89 | 0.04 | 0.77 | 0.90 | 0.97 | |
RMSE↓ | 3.92 | 0.69 | 2.45 | 3.90 | 5.43 | |
Fire P | PSNR↑ | 23.62 | 5.02 | 14.63 | 23.64 | 36.03 |
SSIM↑ | 0.82 | 0.09 | 0.57 | 0.85 | 0.96 | |
RMSE↓ | 33.99 | 19.11 | 6.98 | 29.06 | 81.94 | |
Clipping Fire P | PSNR↑ | 20.29 | 3.10 | 14.11 | 20.23 | 27.65 |
SSIM↑ | 0.89 | 0.04 | 0.77 | 0.89 | 0.97 | |
RMSE↓ | 45.35 | 15.93 | 18.29 | 42.99 | 86.98 |
Dataset | Metric | Average | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
D-EYE | PSNR↑ | 26.14 | 3.78 | 16.93 | 26.17 | 33.15 |
SSIM↑ | 0.96 | 0.04 | 0.80 | 0.93 | 0.97 | |
RMSE↓ | 3.21 | 0.85 | 1.74 | 3.09 | 5.19 | |
Fire P | PSNR↑ | 24.08 | 6.27 | 14.86 | 23.49 | 36.99 |
SSIM↑ | 0.80 | 0.10 | 0.56 | 0.82 | 0.95 | |
RMSE↓ | 34.84 | 22.25 | 6.25 | 29.57 | 79.81 | |
Clippling Fire P | PSNR↑ | 25.46 | 3.80 | 17.82 | 25.19 | 36.89 |
SSIM↑ | 0.94 | 0.03 | 0.83 | 0.94 | 0.98 | |
RMSE↓ | 25.66 | 10.45 | 6.31 | 24.29 | 56.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.; Almeida, M.; Almeida, J.; Braz, G.; Camara, J.; Cunha, A. Image Stitching of Low-Resolution Retinography Using Fundus Blur Filter and Homography Convolutional Neural Network. Information 2024, 15, 652. https://doi.org/10.3390/info15100652
Santos L, Almeida M, Almeida J, Braz G, Camara J, Cunha A. Image Stitching of Low-Resolution Retinography Using Fundus Blur Filter and Homography Convolutional Neural Network. Information. 2024; 15(10):652. https://doi.org/10.3390/info15100652
Chicago/Turabian StyleSantos, Levi, Maurício Almeida, João Almeida, Geraldo Braz, José Camara, and António Cunha. 2024. "Image Stitching of Low-Resolution Retinography Using Fundus Blur Filter and Homography Convolutional Neural Network" Information 15, no. 10: 652. https://doi.org/10.3390/info15100652
APA StyleSantos, L., Almeida, M., Almeida, J., Braz, G., Camara, J., & Cunha, A. (2024). Image Stitching of Low-Resolution Retinography Using Fundus Blur Filter and Homography Convolutional Neural Network. Information, 15(10), 652. https://doi.org/10.3390/info15100652