Privacy-Preserving Method for Trajectory Data Publication Based on Local Preferential Anonymity
Abstract
:1. Introduction
- (1)
- We propose a privacy-preserving method based on LPA, which implements suppression, splitting, and dummy trajectory adding based on the trajectory projection tree.
- (2)
- We design a local preferential (LP) function based on the analysis of location loss and anonymity gain to select the final technique. Selecting an appropriate technique for problematic nodes can effectively achieve privacy preservation and reduce information loss in the process of privacy preservation.
- (3)
- We conduct theoretical analysis and a set of experiments to show the feasibility of privacy preservation. Experimental results show that compared with existing methods, the LPA algorithm can effectively achieve privacy preservation while reducing the information loss of anonymous datasets.
2. Related Work
2.1. Dummy Trajectory
2.2. Clustering and Partition
2.3. Generalization and Suppression
3. Preliminaries
3.1. Problem Definition
3.2. Trajectory Projection Tree
3.3. Anonymity Gain Measurement
4. Methods
4.1. Problematic Nodes Finding
Algorithm 1: Problematic_Nodes_Finding (PNF) |
Input: TP-tree, user’s privacy requirements threshold |
Output: Problematic pairs set Q, problematic nodes set P, |
the total number of problems N |
|
4.2. Anonymity Gain Measurment
4.2.1. Suppression
4.2.2. Splitting
4.2.3. Dummy Trajectory
4.3. Local Preferential Seclection
- (1)
- and Del.loc = 1;
- (2)
- and
Algorithm 2: Local_Preferential (LP) |
Input: Pending problematic node c, user’s privacy requirements threshold , TP-tree |
Output: Array of final operation FinGain |
|
4.4. Trajectory Anonymization
Algorithm 3: Local_Preferential_Anonymity (LPA) |
Input: Original trajectory dataset T, attackers set Adv, user’s privacy requirements threshold |
Output: A corresponding safe dataset |
|
4.5. Algorithms Anlysis
4.5.1. Trajectory Privacy Preservation Capability
4.5.2. Complexity Analysis
5. Experiment
5.1. Dataset
5.2. Metrics
5.3. Result and Analysis
- (1)
- The user’s privacy requirements threshold . is 0.5 by default, and the range varies from 0.4 to 0.7.
- (2)
- The average length of a trajectory denoted by . is 6 by default, and the range varies from 4 to 7.
- (3)
- The size of the trajectory dataset denoted by . is 300 by default, and the range varies between 150 and 400.
5.3.1. Average Trajectory Remaining Ratio
5.3.2. Average Location Appearance Ratio
5.3.3. Frequent Sequential Pattern Mining
6. Discussion
7. Conclusions
8. Patent
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mendes, R.; Vilela, J.P. Privacy-preserving Data Mining: Methods, Metrics, and Applications. IEEE Access 2017, 5, 10562–10582. [Google Scholar] [CrossRef]
- Naji, H.A.; Wu, C.; Zhang, H. Understanding the impact of human mobility patterns on taxi drivers’ profitability using clustering techniques: A case study in Wuhan, China. Information 2017, 8, 67. [Google Scholar] [CrossRef]
- Wang, W.; Mu, Q.; Pu, Y.; Man, D.; Yang, W.; Du, X. Sensitive Labels Matching Privacy Protection in Multi-Social Networks. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications, Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Chen, L.; Xu, Y.; Xie, F.; Huang, M.; Zheng, Z. Data Poisoning Attacks on Neighborhood-Based Recommender Systems. Trans. Emerg. Telecommun. Technol. 2021, 32, e3872. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, R.; Wu, D.; Wang, H.; Song, H.; Ma, X. Local Trajectory Privacy Protection in 5G Enabled Industrial Intelligent Logistics. IEEE Trans. Ind. Inform. 2021, 18, 2868–2876. [Google Scholar] [CrossRef]
- Fung, B.C.; Wang, K.; Chen, R.; Yu, P.S. Privacy-preserving Data Publishing: A Survey of Recent Developments. ACM Comput. Surv. 2010, 42, 1–53. [Google Scholar] [CrossRef]
- Jin, F.; Hua, W.; Francia, M.; Chao, P.; Orlowska, M.; Zhou, X. A Survey and Experimental Study on Privacy-Preserving Trajectory Data Publishing. IEEE Trans. Knowl. Data Eng. 2022, 1. [Google Scholar] [CrossRef]
- Terrovitis, M.; Poulis, G.; Mamoulis, N.; Skiadopoulos, S. Local Suppression and Splitting Techniques for Privacy Preserving Publication of Trajectories. IEEE Trans. Knowl. Data Eng. 2017, 29, 1466–1479. [Google Scholar] [CrossRef]
- Hassan, M.Y.; Saha, U.; Mohammed, N.; Durocher, S.; Miller, A. Efficient Privacy-Preserving Approaches for Trajectory Datasets. In Proceedings of the IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, Calgary, AB, Canada, 17–22 August 2020; pp. 612–619. [Google Scholar]
- Lin, C.Y. Suppression Techniques for Privacy-preserving Trajectory Data Publishing. Knowl.-Based Syst. 2020, 206, 106354. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, Y.C.; Fu, W.T.; Chen, Y.S.; Chien, K.C.; Lin, B.Y. Efficiently Preserving Privacy on Large Trajectory Datasets. In Proceedings of the IEEE Third International Conference on Data Science in Cyberspace, Guangzhou, China, 18–21 June 2018; pp. 358–364. [Google Scholar]
- Luper, D.; Cameron, D.; Miller, J.; Arabnia, H.R. Spatial and Temporal Target Association Through Semantic Analysis and GPS Data Mining. In Proceedings of the 2007 International Conference on Information & Knowledge Engineering, Las Vegas, Nevada, USA, 25–28 June 2007; pp. 25–28. [Google Scholar]
- Lei, P.R.; Peng, W.C.; Su, I.J.; Chang, C.P. Dummy-based Schemes for Protecting Movement Trajectories. J. Inf. Sci. Eng. 2012, 28, 335–350. [Google Scholar]
- Wu, Q.; Liu, H.; Zhang, C.; Fan, Q.; Li, Z.; Wang, K. Trajectory Protection Schemes Based on A Gravity Mobility Model in IoT. Electronics 2019, 8, 148. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Xia, X.; Zong, C.; Zhu, R.; Li, J. Dummy-Based Trajectory Privacy Protection Against Exposure Location Attacks. In Proceedings of the International Conference on Web Information Systems and Applications, Qingdao, China, 20–22 September 2019; pp. 368–381. [Google Scholar]
- Samarati, P. Protecting Respondents Identities in Microdata Release. IEEE Trans. Knowl. Data Eng. 2001, 13, 1010–1027. [Google Scholar] [CrossRef]
- Sweeney, L. k-anonymity: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2002, 10, 557–570. [Google Scholar] [CrossRef]
- Abul, O.; Bonchi, F.; Nanni, M. Never walk alone: Uncertainty for Anonymity in Moving Objects Databases. In Proceedings of the IEEE 24th International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; pp. 376–385. [Google Scholar]
- Domingo-Ferrer, J.; Trujillo-Rasua, R. Microaggregation-and Permutation-Based Anonymization of Movement Data. Inf. Sci. 2012, 208, 55–80. [Google Scholar] [CrossRef]
- Trujillo-Rasua, R.; Domingo-Ferrer, J. On the Privacy Offered by (k, δ)-Anonymity. Inf. Syst. 2013, 38, 491–494. [Google Scholar] [CrossRef]
- Dong, Y.; Pi, D. Novel Privacy-Preserving Algorithm Based on Frequent Path for Trajectory Data Publishing. Knowl.-Based Syst. 2018, 148, 55–65. [Google Scholar] [CrossRef]
- Kopanaki, D.; Pelekis, N.; Kopanakis, I.; Theodoridis, Y. Who Cares about Others’ privacy: Personalized Anonymization of Moving Object Trajectories. In Proceedings of the 19th International Conference on Extending Database Technology: Advances in Database Technology, Bordeaux, France, 15–18 March 2016. [Google Scholar]
- Chen, C.; Luo, Y.; Yu, Q.; Hu, G. TPPG: Privacy-Preserving Trajectory Data Publication Based on 3D-Grid Partition. Intell. Data Anal. 2019, 23, 503–533. [Google Scholar] [CrossRef]
- Nergiz, M.E.; Atzori, M.; Saygin, Y. Towards Trajectory Anonymization: A Generalization-Based Approach. In Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS and LBS, Irvine, CA, USA, 4–7 November 2008; Volume 2, pp. 52–61. [Google Scholar] [CrossRef]
- Yarovoy, R.; Bonchi, F.; Lakshmanan, L.V.; Wang, W.H. Anonymizing Moving Objects: How to Hide a Mob in A Crowd? In Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, Saint Petersburg, Russia, 24–26 March 2009; pp. 72–83. [Google Scholar]
- Terrovitis, M.; Mamoulis, N.; Kalnis, P. Local and Global Recoding Methods for Anonymizing Set-valued Data. VLDB J. 2011, 20, 83–106. [Google Scholar] [CrossRef]
- Poulis, G.; Skiadopoulos, S.; Loukidis, G.; Gkoulalas Divanis, A. Apriori-based Algorithms for km-anonymizing Trajectory Data. Trans. Data Priv. 2014, 7, 165–194. [Google Scholar] [CrossRef]
- Terrovitis, M.; Mamoulis, N. Privacy preservation in the publication of trajectories. In Proceedings of the 9th International Conference on Mobile Data Management, Beijing, China, 27-30 April 2008; pp. 65–72. [Google Scholar]
- Yao, L.; Chen, Z.; Hu, H.; Wu, G.; Wu, B. Privacy Preservation for Trajectory Publication Based on Differential Privacy. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–21. [Google Scholar] [CrossRef]
- Chen, R.; Fung, B.C.; Mohammed, N.; Desai, B.C.; Wang, K. Privacy-preserving Trajectory Data Publishing by Local Suppression. Inf. Sci. 2013, 231, 83–97. [Google Scholar] [CrossRef]
- Komishani, E.G.; Abadi, M.; Deldar, F. PPTD: Preserving Personalized Privacy in Trajectory Data Publishing by Sensitive Attribute Generalization and Trajectory Local Suppression. Knowl.-Based Syst. 2016, 94, 43–59. [Google Scholar] [CrossRef]
ID | Trajectory |
---|---|
ID | |
---|---|
Problematic Node | Trajectory ID | Final Operation | Operation Information | Anonymity Gain |
---|---|---|---|---|
suppress | ||||
split | ||||
dummy |
ID | Trajectory |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Luo, Y.; Yu, Q.; Xu, L.; Lu, Z. Privacy-Preserving Method for Trajectory Data Publication Based on Local Preferential Anonymity. Information 2023, 14, 157. https://doi.org/10.3390/info14030157
Zhang X, Luo Y, Yu Q, Xu L, Lu Z. Privacy-Preserving Method for Trajectory Data Publication Based on Local Preferential Anonymity. Information. 2023; 14(3):157. https://doi.org/10.3390/info14030157
Chicago/Turabian StyleZhang, Xiao, Yonglong Luo, Qingying Yu, Lina Xu, and Zhonghao Lu. 2023. "Privacy-Preserving Method for Trajectory Data Publication Based on Local Preferential Anonymity" Information 14, no. 3: 157. https://doi.org/10.3390/info14030157
APA StyleZhang, X., Luo, Y., Yu, Q., Xu, L., & Lu, Z. (2023). Privacy-Preserving Method for Trajectory Data Publication Based on Local Preferential Anonymity. Information, 14(3), 157. https://doi.org/10.3390/info14030157