Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive and Scientometric Analysis of Records
3.1.1. Most Frequent Sources
3.1.2. Bradford’s Law
3.1.3. Lotka’s Law
3.1.4. The Most Relevant Countries by Corresponding Authors
3.2. Literature Clustering
Cluster-Based Literature Table
- is the mean distance between a sample and all other points in the same class;
- is the mean distance between a sample and all other points in the next nearest cluster.
- is the between-group dispersion matrix and its trace;
- is the within-cluster dispersion matrix and its trace;
- is the number of points, and is the number of clusters.
- is the number of clusters;
- is the average distance of all points in cluster to the centroic of cluster ;
- is the distance between centroids and .
4. Discussion
4.1. AI/ML Algorithms Cluster
- Examination of the long-term impacts of AI and machine learning on consumer trust across diverse cultural contexts.
- Advanced machine learning techniques for real-time hyper-personalization in both online and physical retail environments.
- Comparative studies on the effectiveness of different AI algorithms in predictive analytics for various marketing domains.
4.2. Social Media Cluster
- Examination of the evolving role of AI in managing and interpreting complex social media data for personalized marketing.
- Analysis of the effectiveness of AI-driven advertisements on different social media platforms and their impact on consumer behavior.
- Ethical implications and privacy concerns of AI in social media marketing, with a focus on user personality prediction and behavior analysis.
4.3. Consumer Behavior Cluster
- The integration of virtual agents in retail and service industries and their impact on consumer relationship building.
- The effectiveness of decision trees and genetic algorithms in predicting consumer behavior across digital and physical shopping platforms.
- Analysis of the role of AI in influencing consumer perceptions and decision-making in e-commerce settings.
4.4. E-Commerce Cluster
- Development of sophisticated AI-driven chatbots for enhancing customer experience in e-commerce.
- Impact of conversational AI on customer service and sales in industries like banking and hospitality.
- Challenges and opportunities in implementing AI technologies in e-commerce, particularly in privacy and security aspects.
4.5. Digital Advertising Cluster
- Examination of the effectiveness of AI in creating and delivering personalized advertisements through emerging channels like smart speakers.
- Ethical considerations and consumer attitudes toward AI in advertising, particularly in voice and data mining.
- The role of AI in combating challenges such as click fraud in online advertising.
4.6. Optimization and Budget Control
- Development of AI algorithms for more efficient real-time bidding and ad allocation in digital advertising.
- Potential of AI in predictive budget allocation and its impact on marketing campaign performance.
- Integration of AI in optimizing marketing strategies across various digital platforms.
4.7. Competitive Strategies Cluster
- The role of AI in innovative e-commerce marketing models and market segmentation strategies.
- The impact of AI on the development of marketing strategies in specific sectors like retail.
- The challenges and opportunities in adopting AI for strategic marketing decisions, particularly in the B2B context.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
SO | Rank | Freq | cumFreq | Zone |
---|---|---|---|---|
Journal of Business Research | 1 | 10 | 10 | Zone 1 |
Applied Marketing Analytics | 2 | 9 | 19 | Zone 1 |
Journal of Retailing and Consumer Services | 3 | 7 | 26 | Zone 1 |
Industrial Marketing Management | 4 | 6 | 32 | Zone 1 |
Australasian Marketing Journal | 5 | 5 | 37 | Zone 1 |
Journal of the Academy of Marketing Science | 6 | 5 | 42 | Zone 1 |
Psychology and Marketing | 7 | 5 | 47 | Zone 1 |
European Journal of Marketing | 8 | 3 | 50 | Zone 1 |
IEEE Access | 9 | 3 | 53 | Zone 1 |
International Journal of Information Management | 10 | 3 | 56 | Zone 1 |
International Journal of Research In Marketing | 11 | 3 | 59 | Zone 1 |
Journal of Brand Strategy | 12 | 3 | 62 | Zone 1 |
Journal of Interactive Marketing | 13 | 3 | 65 | Zone 1 |
Journal of Product and Brand Management | 14 | 3 | 68 | Zone 1 |
Journal of Research in Interactive Marketing | 15 | 3 | 71 | Zone 1 |
Mobile Information Systems | 16 | 3 | 74 | Zone 2 |
Sustainability | 17 | 3 | 77 | Zone 2 |
Technological Forecasting and Social Change | 18 | 3 | 80 | Zone 2 |
Electronic Commerce Research and Applications | 19 | 2 | 82 | Zone 2 |
Frontiers in Psychology | 20 | 2 | 84 | Zone 2 |
Information Processing and Management | 21 | 2 | 86 | Zone 2 |
Information Systems Frontiers | 22 | 2 | 88 | Zone 2 |
International Journal of Computational Intelligence Systems | 23 | 2 | 90 | Zone 2 |
International Journal of Emerging Markets | 24 | 2 | 92 | Zone 2 |
International Journal of Engineering And Advanced Technology | 25 | 2 | 94 | Zone 2 |
International Journal of Market Research | 26 | 2 | 96 | Zone 2 |
Journal of Brand Management | 27 | 2 | 98 | Zone 2 |
Journal of Business Ethics | 28 | 2 | 100 | Zone 2 |
Journal of Marketing | 29 | 2 | 102 | Zone 2 |
Journal of Marketing Theory And Practice | 30 | 2 | 104 | Zone 2 |
Journal of Services Marketing | 31 | 2 | 106 | Zone 2 |
Scientific Programming | 32 | 2 | 108 | Zone 2 |
Security and Communication Networks | 33 | 2 | 110 | Zone 2 |
Advances in Distributed Computing and Artificial Intelligence Journal | 34 | 1 | 111 | Zone 2 |
ARPN Journal of Engineering And Applied Sciences | 35 | 1 | 112 | Zone 2 |
Artificial Intelligence Review | 36 | 1 | 113 | Zone 2 |
Bottom Line | 37 | 1 | 114 | Zone 2 |
Business: Theory and Practice | 38 | 1 | 115 | Zone 2 |
California Management Review | 39 | 1 | 116 | Zone 2 |
Central European Business Review | 40 | 1 | 117 | Zone 2 |
Computational Intelligence and Neuroscience | 41 | 1 | 118 | Zone 2 |
Computer Speech and Language | 42 | 1 | 119 | Zone 2 |
Computers | 43 | 1 | 120 | Zone 2 |
Computers and Electrical Engineering | 44 | 1 | 121 | Zone 2 |
Computers and Industrial Engineering | 45 | 1 | 122 | Zone 2 |
Decision Support Systems | 46 | 1 | 123 | Zone 2 |
Designs | 47 | 1 | 124 | Zone 2 |
Eastern-European Journal of Enterprise Technologies | 48 | 1 | 125 | Zone 2 |
Egyptian Informatics Journal | 49 | 1 | 126 | Zone 2 |
Electronic Commerce Research | 50 | 1 | 127 | Zone 2 |
Electronics | 51 | 1 | 128 | Zone 2 |
Emerging Science Journal | 52 | 1 | 129 | Zone 2 |
Engineering Applications of Artificial Intelligence | 53 | 1 | 130 | Zone 2 |
European Journal of Operational Research | 54 | 1 | 131 | Zone 2 |
Expert Systems with Applications | 55 | 1 | 132 | Zone 2 |
F1000Research | 56 | 1 | 133 | Zone 2 |
Foresight | 57 | 1 | 134 | Zone 2 |
Foundations and Trends in Marketing | 58 | 1 | 135 | Zone 2 |
Fujitsu Scientific and Technical Journal | 59 | 1 | 136 | Zone 2 |
Humanities and Social Sciences Communications | 60 | 1 | 137 | Zone 2 |
IAES International Journal of Artificial Intelligence | 61 | 1 | 138 | Zone 2 |
IEEE Intelligent Systems | 62 | 1 | 139 | Zone 2 |
IEEE Transactions on Computational Social Systems | 63 | 1 | 140 | Zone 2 |
IEEE Transactions on Engineering Management | 64 | 1 | 141 | Zone 2 |
IEEE Transactions on Neural Networks and Learning Systems | 65 | 1 | 142 | Zone 2 |
Industrial Management And Data Systems | 66 | 1 | 143 | Zone 3 |
Informatics | 67 | 1 | 144 | Zone 3 |
Information Sciences Letters | 68 | 1 | 145 | Zone 3 |
Informatologia | 69 | 1 | 146 | Zone 3 |
Innovative Marketing | 70 | 1 | 147 | Zone 3 |
Intelligent Automation and Soft Computing | 71 | 1 | 148 | Zone 3 |
Intelligent Systems with Applications | 72 | 1 | 149 | Zone 3 |
International Journal of Advanced Computer Science and Applications | 73 | 1 | 150 | Zone 3 |
International Journal of Advanced Trends in Computer Science and Engineering | 74 | 1 | 151 | Zone 3 |
International Journal of Advances in Soft Computing and its Applications | 75 | 1 | 152 | Zone 3 |
International Journal of Advertising | 76 | 1 | 153 | Zone 3 |
International Journal of Computer Information Systems and Industrial Management Applications | 77 | 1 | 154 | Zone 3 |
International Journal of E-business Research | 78 | 1 | 155 | Zone 3 |
International Journal of Electronic Business | 79 | 1 | 156 | Zone 3 |
International Journal of Electronic Customer Relationship Management | 80 | 1 | 157 | Zone 3 |
International Journal of Engineering Trends and Technology | 81 | 1 | 158 | Zone 3 |
International Journal of Hospitality Management | 82 | 1 | 159 | Zone 3 |
International Journal of Human-computer Interaction | 83 | 1 | 160 | Zone 3 |
International Journal of Information Management Data Insights | 84 | 1 | 161 | Zone 3 |
International Journal of Innovative Technology and Exploring Engineering | 85 | 1 | 162 | Zone 3 |
International Journal of Recent Technology and Engineering | 86 | 1 | 163 | Zone 3 |
International Journal of Retail and Distribution Management | 87 | 1 | 164 | Zone 3 |
Journal of Advertising | 88 | 1 | 165 | Zone 3 |
Journal of Ambient Intelligence and Smart Environments | 89 | 1 | 166 | Zone 3 |
Journal of Business and Industrial Marketing | 90 | 1 | 167 | Zone 3 |
Journal of Computational Methods in Sciences and Engineering | 91 | 1 | 168 | Zone 3 |
Journal of Consumer Behaviour | 92 | 1 | 169 | Zone 3 |
Journal of Consumer Marketing | 93 | 1 | 170 | Zone 3 |
Journal of Content, Community and Communication | 94 | 1 | 171 | Zone 3 |
Journal of Enterprise Information Management | 95 | 1 | 172 | Zone 3 |
Journal of Entrepreneurship in Emerging Economies | 96 | 1 | 173 | Zone 3 |
Journal of Financial Services Marketing | 97 | 1 | 174 | Zone 3 |
Journal of Global Information Management | 98 | 1 | 175 | Zone 3 |
Journal of Global Scholars of Marketing Science: Bridging Asia and The World | 99 | 1 | 176 | Zone 3 |
Journal of Hospitality and Tourism Technology | 100 | 1 | 177 | Zone 3 |
Journal of Industrial Engineering and Engineering Management | 101 | 1 | 178 | Zone 3 |
Journal of Marketing Analytics | 102 | 1 | 179 | Zone 3 |
Journal of Metaverse | 103 | 1 | 180 | Zone 3 |
Journal of Organizational and End User Computing | 104 | 1 | 181 | Zone 3 |
Journal of Retailing | 105 | 1 | 182 | Zone 3 |
Journal of Sensors | 106 | 1 | 183 | Zone 3 |
Journal of Service Management | 107 | 1 | 184 | Zone 3 |
Journal of Strategic Marketing | 108 | 1 | 185 | Zone 3 |
Journal of Supercomputing | 109 | 1 | 186 | Zone 3 |
Journal of Telecommunication, Electronic and Computer Engineering | 110 | 1 | 187 | Zone 3 |
Journal of The Association for Information Science and Technology | 111 | 1 | 188 | Zone 3 |
Journal of The Knowledge Economy | 112 | 1 | 189 | Zone 3 |
Journal of Theoretical and Applied Electronic Commerce Research | 113 | 1 | 190 | Zone 3 |
KSII Transactions on Internet and Information Systems | 114 | 1 | 191 | Zone 3 |
Lecture Notes on Data Engineering and Communications Technologies | 115 | 1 | 192 | Zone 3 |
Management Decision | 116 | 1 | 193 | Zone 3 |
Materials Today: Proceedings | 117 | 1 | 194 | Zone 3 |
NEC Technical Journal | 118 | 1 | 195 | Zone 3 |
Network Security | 119 | 1 | 196 | Zone 3 |
Neural Network World | 120 | 1 | 197 | Zone 3 |
Qualitative Market Research | 121 | 1 | 198 | Zone 3 |
Research Technology Management | 122 | 1 | 199 | Zone 3 |
SAGE Open | 123 | 1 | 200 | Zone 3 |
Singapore Economic Review | 124 | 1 | 201 | Zone 3 |
Spanish Journal of Marketing—Esic | 125 | 1 | 202 | Zone 3 |
Studies in Computational Intelligence | 126 | 1 | 203 | Zone 3 |
Systems Research and Behavioral Science | 127 | 1 | 204 | Zone 3 |
Technology Analysis and Strategic Management | 128 | 1 | 205 | Zone 3 |
Telematics and Informatics | 129 | 1 | 206 | Zone 3 |
TEM Journal | 130 | 1 | 207 | Zone 3 |
TQM Journal | 131 | 1 | 208 | Zone 3 |
Uncertain Supply Chain Management | 132 | 1 | 209 | Zone 3 |
Wireless Communications and Mobile Computing | 133 | 1 | 210 | Zone 3 |
World Journal of Entrepreneurship, Management and Sustainable Development | 134 | 1 | 211 | Zone 3 |
References
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the Future of Digital and Social Media Marketing Research: Perspectives and Research Propositions. Int. J. Inf. Manag. 2021, 59, 102168. [Google Scholar] [CrossRef]
- Chintalapati, S.; Pandey, S.K. Artificial Intelligence in Marketing: A Systematic Literature Review. Int. J. Mark. Res. 2022, 64, 38–68. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, R.; Deb, S.; Maitra, D. Artificial Intelligence in Marketing: Systematic Review and Future Research Direction. Int. J. Inf. Manag. Data Insights 2021, 1, 100002. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ünlü, R.; Xanthopoulos, P. Estimating the Number of Clusters in a Dataset via Consensus Clustering. Expert Syst. Appl. 2019, 125, 33–39. [Google Scholar] [CrossRef]
- Caliński, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Çalı, S.; Balaman, Ş.Y. Improved Decisions for Marketing, Supply and Purchasing: Mining Big Data through an Integration of Sentiment Analysis and Intuitionistic Fuzzy Multi Criteria Assessment. Comput. Ind. Eng. 2019, 129, 315–332. [Google Scholar] [CrossRef]
- Toader, D.-C.; Boca, G.; Toader, R.; Măcelaru, M.; Toader, C.; Ighian, D.; Rădulescu, A.T. The Effect of Social Presence and Chatbot Errors on Trust. Sustainability 2020, 12, 256. [Google Scholar] [CrossRef]
- Micu, A.; Capatina, A.; Cristea, D.S.; Munteanu, D.; Micu, A.-E.; Sarpe, D.A. Assessing an On-Site Customer Profiling and Hyper-Personalization System Prototype Based on a Deep Learning Approach. Technol. Forecast. Soc. Chang. 2022, 174. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Ni, L.; Li, T. Application of Artificial Intelligence in Precision Marketing. J. Organ. End User Comput. 2021, 33, 1–27. [Google Scholar] [CrossRef]
- Yin, J.; Qiu, X. Ai Technology and Online Purchase Intention: Structural Equation Model Based on Perceived Value. Sustainability 2021, 13, 5671. [Google Scholar] [CrossRef]
- Martínez, A.; Schmuck, C.; Pereverzyev, S.; Pirker, C.; Haltmeier, M. A Machine Learning Framework for Customer Purchase Prediction in the Non-Contractual Setting. Eur. J. Oper. Res. 2020, 281, 588–596. [Google Scholar] [CrossRef]
- Han, R.; Lam, H.K.S.; Zhan, Y.; Wang, Y.; Dwivedi, Y.K.; Tan, K.H. Artificial Intelligence in Business-to-Business Marketing: A Bibliometric Analysis of Current Research Status, Development and Future Directions. Ind. Manag. Data Syst. 2021, 121, 2467–2497. [Google Scholar] [CrossRef]
- Olan, F.; Suklan, J.; Arakpogun, E.O.; Robson, A. Advancing Consumer Behavior: The Role of Artificial Intelligence Technologies and Knowledge Sharing. IEEE Trans. Eng. Manag. 2021, 1–13. [Google Scholar] [CrossRef]
- Sarath Kumar Boddu, R.; Santoki, A.A.; Khurana, S.; Vitthal Koli, P.; Rai, R.; Agrawal, A. An Analysis to Understand the Role of Machine Learning, Robotics and Artificial Intelligence in Digital Marketing. Mater. Today Proc. 2022, 56, 2288–2292. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Erazo, D.M.; Ortiz-Garces, I.; Gaibor-Naranjo, W.; Palacios-Pacheco, X. Artificial Intelligence Model for the Identification of the Personality of Twitter Users through the Analysis of Their Behavior in the Social Network. Electronics 2022, 11, 3811. [Google Scholar] [CrossRef]
- Aguilar, J.; Garcia, G. An Adaptive Intelligent Management System of Advertising for Social Networks: A Case Study of Facebook. IEEE Trans. Comput. Soc. Syst. 2018, 5, 20–32. [Google Scholar] [CrossRef]
- Argan, M.; Dinc, H.; Kaya, S.; Argan, M.T. Artificial Intelligence (AI) in Advertising: Understanding and Schematizing the Behaviors of Social Media Users. Adv. Distrib. Comput. Artif. Intell. J. 2022, 11, 331–348. [Google Scholar] [CrossRef]
- Cutler, J.; Culotta, A. Using Weak Supervision to Scale the Development of Machine-Learning Models for Social Media-Based Marketing Research. Appl. Mark. Anal. 2019, 5, 159–169. [Google Scholar]
- Perakakis, E.; Mastorakis, G.; Kopanakis, I. Social Media Monitoring: An Innovative Intelligent Approach. Designs 2019, 3, 24. [Google Scholar] [CrossRef]
- Basri, W. Examining the Impact of Artificial Intelligence (Ai)-Assisted Social Media Marketing on the Performance of Small and Medium Enterprises: Toward Effective Business Management in the Saudi Arabian Context. Int. J. Comput. Intell. Syst. 2020, 13, 142–152. [Google Scholar] [CrossRef]
- Tzafilkou, K.; Economides, A.A.; Panavou, F.-R. You Look like You’ll Buy It! Purchase Intent Prediction Based on Facially Detected Emotions in Social Media Campaigns for Food Products. Computers 2023, 12, 88. [Google Scholar] [CrossRef]
- Arasu, B.S.; Seelan, B.J.B.; Thamaraiselvan, N. A Machine Learning-Based Approach to Enhancing Social Media Marketing. Comput. Electr. Eng. 2020, 86, 106723. [Google Scholar] [CrossRef]
- Nuanmeesri, S.; Poomhiran, L.; Sriurai, W. Artificial Intelligence Model of the User Patterns and Behaviors Analysis on Social Media to Become Customers in Smart Marketing. Int. J. Eng. Trends Technol. 2022, 70, 393–401. [Google Scholar] [CrossRef]
- Salminen, J.; Mustak, M.; Corporan, J.; Jung, S.-G.; Jansen, B.J. Detecting Pain Points from User-Generated Social Media Posts Using Machine Learning. J. Interact. Mark. 2022, 57, 517–539. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Liu-Thompkins, Y.; Okazaki, S.; Li, H. Artificial Empathy in Marketing Interactions: Bridging the Human-AI Gap in Affective and Social Customer Experience. J. Acad. Mark. Sci. 2022, 50, 1198–1218. [Google Scholar] [CrossRef]
- Capatina, A.; Kachour, M.; Lichy, J.; Micu, A.; Micu, A.-E.; Codignola, F. Matching the Future Capabilities of an Artificial Intelligence-Based Software for Social Media Marketing with Potential Users’ Expectations. Technol. Forecast. Soc. Change 2020, 151, 119794. [Google Scholar] [CrossRef]
- Batta, A.; Kar, A.K.; Satpathy, S. Cross-Platform Analysis of Seller Performance and Churn for Ecommerce Using Artificial Intelligence. J. Glob. Inf. Manag. 2023, 31, 1–21. [Google Scholar] [CrossRef]
- Huang, R.; Kim, M.; Lennon, S. Trust as a Second-Order Construct: Investigating the Relationship between Consumers and Virtual Agents. Telemat. Inf. 2022, 70, 101811. [Google Scholar] [CrossRef]
- Gkikas, D.C.; Theodoridis, P.K.; Beligiannis, G.N. Enhanced Marketing Decision Making for Consumer Behaviour Classification Using Binary Decision Trees and a Genetic Algorithm Wrapper. Informatics 2022, 9, 45. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, L.; Wang, X.; Wu, A. The Influence of AI Word-of-Mouth System on Consumers’ Purchase Behaviour: The Mediating Effect of Risk Perception. Syst. Res. Behav. Sci. 2022, 39, 516–530. [Google Scholar] [CrossRef]
- Barykin, S.; Mehta, R.; Verghese, J.; Mahajan, S.; Bozhuk, S.; Kozlova, N.; Vasilievna Kapustina, I.; Mikhaylov, A.; Naumova, E.; Dedyukhina, N. Consumers’ Behavior in Conversational Commerce Marketing Based on Messenger Chatbots. F1000 Res. 2022, 11, 647. [Google Scholar] [CrossRef]
- Vernuccio, M.; Patrizi, M.; Pastore, A. Delving into Brand Anthropomorphisation Strategies in the Experiential Context of Name-Brand Voice Assistants. J. Consum. Behav. 2023, 22, 1074–1083. [Google Scholar] [CrossRef]
- Adwan, A.; Aladwan, R. Use of Artificial Intelligence System to Predict Consumers’ Behaviors. Int. J. Data Netw. Sci. 2022, 6, 1223–1232. [Google Scholar] [CrossRef]
- Li, Z. Consumer Behavior Analysis Model Based on Machine Learning. J. Intell. Fuzzy Syst. 2021, 40, 6433–6443. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Liu, K.; Wang, X. Chatbot or Human? The Impact of Online Customer Service on Consumers’ Purchase Intentions. Psychol. Mark. 2023, 40, 2186–2200. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. “So What If ChatGPT Wrote It?” Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Li, M.; Wang, R. Chatbots in E-Commerce: The Effect of Chatbot Language Style on Customers’ Continuance Usage Intention and Attitude toward Brand. J. Retail. Consum. Serv. 2023, 71, 103209. [Google Scholar] [CrossRef]
- Kim, W.B.; Hur, H.J. What Makes People Feel Empathy for AI Chatbots? Assessing the Role of Competence and Warmth. Int. J. Hum.-Comput. Interact. 2023. [Google Scholar] [CrossRef]
- Marjerison, R.K.; Zhang, Y.; Zheng, H. AI in E-Commerce: Application of the Use and Gratification Model to The Acceptance of Chatbots. Sustainability 2022, 14, 14270. [Google Scholar] [CrossRef]
- Trivedi, S.K.; Patra, P.; Srivastava, P.R.; Zhang, J.Z.; Zheng, L.J. What Prompts Consumers to Purchase Online? A Machine Learning Approach. Electron. Commer. Res. 2022. [Google Scholar] [CrossRef]
- Ngai, E.W.T.; Lee, M.C.M.; Luo, M.; Chan, P.S.L.; Liang, T. An Intelligent Knowledge-Based Chatbot for Customer Service. Elect. Commer. Res. Appl. 2021, 50, 101098. [Google Scholar] [CrossRef]
- Silva, E.S.; Bonetti, F. Digital Humans in Fashion: Will Consumers Interact? J. Retail. Consum. Serv. 2021, 60, 102430. [Google Scholar] [CrossRef]
- Guerreiro, J.; Loureiro, S.M.C.; Ribeiro, C. Advertising Acceptance via Smart Speakers. Span. J. Mark.-ESIC 2022, 26, 286–308. [Google Scholar] [CrossRef]
- Guo, C. Intelligent Voice System Design for Optimizing E-Business Advertising Rhetoric Based on SVM Algorithm. Comput. Intell. Neurosci. 2022, 2022, 1944275. [Google Scholar] [CrossRef]
- Rodgers, W.; Nguyen, T. Advertising Benefits from Ethical Artificial Intelligence Algorithmic Purchase Decision Pathways. J. Bus. Ethics 2022, 178, 1043–1061. [Google Scholar] [CrossRef]
- Aljabri, M.; Mohammad, R.M.A. Click Fraud Detection for Online Advertising Using Machine Learning. Egypt. Inform. J. 2023, 24, 341–350. [Google Scholar] [CrossRef]
- Schultz, C.D.; Koch, C.; Olbrich, R. Dark Sides of Artificial Intelligence: The Dangers of Automated Decision-Making in Search Engine Advertising. J. Assoc. Soc. Inf. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Sabharwal, D.; Sood, R.S.; Verma, M. Studying the Relationship between Artificial Intelligence and Digital Advertising in Marketing Strategy. J. Content Community Commun. 2022, 16, 118–126. [Google Scholar] [CrossRef]
- Shi, B.; Wang, H. An AI-Enabled Approach for Improving Advertising Identification and Promotion in Social Networks. Technol. Forecast. Soc. Chang. 2023, 188, 122269. [Google Scholar] [CrossRef]
- Miralles-Pechuán, L.; Ponce, H.; Martínez-Villaseñor, L. A 2020 Perspective on “A Novel Methodology for Optimizing Display Advertising Campaigns Using Genetic Algorithms”. Electron. Commer. Res. Appl. 2020, 40, 100953. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Zhang, P.; Long, G.; Zhang, C. Collective Hyping Detection System for Identifying Online Spam Activities. IEEE Intell. Syst. 2017, 32, 53–63. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Y. Bid-Aware Active Learning in Real-Time Bidding for Display Advertising. IEEE Access 2020, 8, 26561–26572. [Google Scholar] [CrossRef]
- Wang, L.; Han, L.; Chen, X.; Li, C.; Huang, J.; Zhang, W.; Zhang, W.; He, X.; Luo, D. Hierarchical Multiagent Reinforcement Learning for Allocating Guaranteed Display Ads. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 5361–5373. [Google Scholar] [CrossRef]
- Wang, J. Innovation of E-Commerce Marketing Model under the Background of Big Data and Artificial Intelligence. J. Comput. Methods Sci. Eng. 2022, 22, 1721–1727. [Google Scholar] [CrossRef]
- Giri, A.; Chatterjee, S.; Paul, P.; Chakraborty, S. Determining the Impact of Artificial Intelligence on ‘Developing Marketing Strategies’ in Organized Retail Sector of West Bengal, India. Int. J. Eng. Adv. Technol. 2019, 8, 3031–3036. [Google Scholar] [CrossRef]
- Miklosik, A.; Kuchta, M.; Evans, N.; Zak, S. Towards the Adoption of Machine Learning-Based Analytical Tools in Digital Marketing. IEEE Access 2019, 7, 85705–85718. [Google Scholar] [CrossRef]
- Rosa, A.; Bento, T.; Pereira, L.; da Costa, R.L.; Dias, Á.; Gonçalves, R. Gaining Competitive Advantage through Artificial Intelligence Adoption. Int. J. Electron. Bus. 2022, 17, 386–406. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Fan, N.-H. A Novel Approach to Market Segmentation Selection Using Artificial Intelligence Techniques. J Supercomput 2023, 79, 1235–1262. [Google Scholar] [CrossRef]
- Stone, M.; Aravopoulou, E.; Ekinci, Y.; Evans, G.; Hobbs, M.; Labib, A.; Laughlin, P.; Machtynger, J.; Machtynger, L. Artificial Intelligence (AI) in Strategic Marketing Decision-Making: A Research Agenda. Bottom Line 2020, 33, 183–200. [Google Scholar] [CrossRef]
- Bag, S.; Gupta, S.; Kumar, A.; Sivarajah, U. An Integrated Artificial Intelligence Framework for Knowledge Creation and B2B Marketing Rational Decision Making for Improving Firm Performance. Ind. Mark. Manag. 2021, 92, 178–189. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Main information about data | |
Timespan | 2015:2023 |
Sources (journals, books, etc.) | 134 |
Documents | 211 |
Annual growth rate % | 42.5 |
Document average age | 1.83 |
Average citations per doc | 23.85 |
References | 12,691 |
Document contents | |
Keywords plus (ID) | 681 |
Author’s keywords (DE) | 714 |
AUTHORS | |
Authors | 667 |
Authors of single-authored docs | 26 |
Authors collaboration | |
Single-authored docs | 26 |
Co-authors per doc | 3.49 |
International co-authorships % | 32.7 |
Document types | |
Article | 211 |
Sources | Articles |
---|---|
Journal of Business Research | 10 |
Applied Marketing Analytics | 9 |
Journal of Retailing And Consumer Services | 7 |
Industrial Marketing Management | 6 |
Australasian Marketing Journal | 5 |
Journal of The Academy of Marketing Science | 5 |
Psychology And Marketing | 5 |
European Journal of Marketing | 3 |
IEEE Access | 3 |
International Journal of Information Management | 3 |
International Journal of Research In Marketing | 3 |
Journal of Brand Strategy | 3 |
Journal of Interactive Marketing | 3 |
Journal of Product And Brand Management | 3 |
Journal of Research In Interactive Marketing | 3 |
Mobile Information Systems | 3 |
Sustainability | 3 |
Technological Forecasting And Social Change | 3 |
Zone | Journals | Articles | % Journals | % Articles | Multiplier |
---|---|---|---|---|---|
Zone 1 | 15 | 71 | 11.19% | 33.65% | - |
Zone 2 | 50 | 71 | 37.31% | 33.65% | 3.33 |
Zone 3 | 69 | 69 | 51.49% | 32.70% | 1.38 |
Total | 134 | 211 | 100.00% | 100.00% | 2.36 |
Publication (X) | No. of Authors (Y) | The Proportion of Authors |
---|---|---|
1 | 608 | 0.912 |
2 | 50 | 0.075 |
3 | 7 | 0.01 |
4 | 2 | 0.003 |
Country | Articles | Single-Country Publication | Multi-Country Publication | Frequency | Multi-Country Publication Ratio |
---|---|---|---|---|---|
China | 34 | 25 | 9 | 0.161 | 0.265 |
USA | 25 | 21 | 4 | 0.118 | 0.16 |
India | 15 | 13 | 2 | 0.071 | 0.133 |
UK | 11 | 4 | 7 | 0.052 | 0.636 |
Australia | 6 | 3 | 3 | 0.028 | 0.5 |
Hong Kong | 5 | 2 | 3 | 0.024 | 0.6 |
Korea | 5 | 4 | 1 | 0.024 | 0.2 |
UAE | 5 | 4 | 1 | 0.024 | 0.2 |
Finland | 4 | 1 | 3 | 0.019 | 0.75 |
France | 4 | 0 | 4 | 0.019 | 1 |
Portugal | 4 | 4 | 0 | 0.019 | 0 |
Canada | 3 | 0 | 3 | 0.014 | 1 |
Germany | 3 | 3 | 0 | 0.014 | 0 |
Greece | 3 | 3 | 0 | 0.014 | 0 |
Italy | 3 | 2 | 1 | 0.014 | 0.333 |
Mexico | 3 | 1 | 2 | 0.014 | 0.667 |
Netherlands | 3 | 1 | 2 | 0.014 | 0.667 |
Spain | 3 | 2 | 1 | 0.014 | 0.333 |
Switzerland | 3 | 2 | 1 | 0.014 | 0.333 |
Cluster | Callon Centrality | Callon Density | Rank Centrality | Rank Density | Cluster Frequency |
---|---|---|---|---|---|
AI/ML Algorithms | 6.935962368 | 70.96509298 | 9 | 5 | 223 |
Social media | 3.151262626 | 58.77525253 | 8 | 3 | 32 |
Consumer Behavior | 1.5 | 105 | 6 | 9 | 10 |
E-Commerce | 3.131944444 | 78.90946502 | 7 | 7 | 32 |
Digital Advertising | 1.048611111 | 54.05092593 | 5 | 2 | 34 |
Budget Optimization | 1 | 63.88888889 | 4 | 4 | 7 |
Competitive Strategies | 0.395833333 | 72.91666667 | 2 | 6 | 14 |
Keyword | Frequencies | Btw Centrality | Clos Centrality | PageRank Centrality |
---|---|---|---|---|
machine learning | 64 | 1055.820511 | 0.006024096 | 0.121646468 |
commerce | 34 | 768.4475448 | 0.005882353 | 0.070993813 |
sales | 16 | 198.3310565 | 0.005025126 | 0.037507544 |
consumer behavior | 14 | 236.1942357 | 0.005025126 | 0.023596581 |
decision making | 10 | 249.171953 | 0.005235602 | 0.024742808 |
big data | 8 | 187.7675854 | 0.005208333 | 0.022524782 |
data mining | 6 | 210.0452139 | 0.005263158 | 0.018984255 |
decision support systems | 6 | 76.34349747 | 0.004926108 | 0.015931389 |
forecasting | 6 | 66.51589138 | 0.004672897 | 0.015440563 |
marketing strategy | 6 | 57.67243825 | 0.004807692 | 0.014109938 |
strategic planning | 6 | 72.06109004 | 0.004901961 | 0.014914574 |
customer satisfaction | 4 | 44.00446478 | 0.004694836 | 0.010154666 |
information analysis | 4 | 49.51062728 | 0.00462963 | 0.011547683 |
data handling | 3 | 10.37739132 | 0.004273504 | 0.00761223 |
marketing models | 3 | 24.11344078 | 0.004672897 | 0.009468987 |
potential customers | 3 | 31.80981655 | 0.004524887 | 0.010737864 |
precision marketing | 3 | 22.86960343 | 0.004291845 | 0.010150383 |
sentiment analysis | 3 | 37.8349971 | 0.004926108 | 0.008634345 |
AI technologies | 2 | 11.29912198 | 0.004651163 | 0.005357946 |
customer profiles | 2 | 3.328993004 | 0.004032258 | 0.004901569 |
customer segmentation | 2 | 13.33416055 | 0.004219409 | 0.00555014 |
decision trees | 2 | 10.94361999 | 0.004166667 | 0.007045056 |
digital technologies | 2 | 22.21773731 | 0.004926108 | 0.006665199 |
knowledge management | 2 | 32.56890359 | 0.005025126 | 0.008251596 |
marketing efficiencies | 2 | 9.040698082 | 0.004347826 | 0.005394081 |
marketing operations | 2 | 10.8076371 | 0.004784689 | 0.006175678 |
online reviews | 2 | 13.24157758 | 0.004219409 | 0.005098014 |
product and services | 2 | 26.74020362 | 0.004950495 | 0.008448213 |
product planning | 2 | 12.00061104 | 0.004273504 | 0.005502575 |
risk assessment | 2 | 40.67836531 | 0.004901961 | 0.007026794 |
Keyword | Frequencies | Btw Centrality | Clos Centrality | PageRank Centrality |
---|---|---|---|---|
social media | 11 | 200.9024374 | 0.005050505 | 0.028361704 |
social media marketing | 5 | 21.49512311 | 0.004484305 | 0.011691877 |
information management | 4 | 79.79239658 | 0.005181347 | 0.009814957 |
intelligent systems | 3 | 54.22078537 | 0.005 | 0.008588241 |
online systems | 3 | 48.35029125 | 0.004854369 | 0.009983508 |
data analytics | 2 | 6.264163348 | 0.004273504 | 0.006918915 |
managerial implications | 2 | 21.49299009 | 0.004464286 | 0.006461095 |
products and services | 2 | 41.57412184 | 0.004830918 | 0.007209013 |
Keyword | Frequencies | Btw Centrality | Clos Centrality | PageRank Centrality |
---|---|---|---|---|
consumer | 2 | 94.44152168 | 0.004761905 | 0.009413763 |
human | 2 | 106.189656 | 0.004975124 | 0.008105341 |
language processing | 2 | 1.460207337 | 0.003636364 | 0.007589943 |
natural language processing | 2 | 1.460207337 | 0.003636364 | 0.007589943 |
trust | 2 | 5.60828578 | 0.004081633 | 0.005832891 |
Keyword | Frequencies | Btw Centrality | Clos Centrality | PageRank Centrality |
---|---|---|---|---|
electronic commerce | 9 | 159.2476837 | 0.005319149 | 0.022089932 |
chatbots | 3 | 8.072186379 | 0.004587156 | 0.003915811 |
e-commerce | 4 | 122.6998775 | 0.005263158 | 0.013758074 |
marketing activities | 3 | 67.80234082 | 0.004484305 | 0.009957807 |
purchase intention | 3 | 24.5466894 | 0.004444444 | 0.011137783 |
consumer purchase | 2 | 10.56621641 | 0.004545455 | 0.008461717 |
machine learning approaches | 2 | 26.16709662 | 0.004651163 | 0.007037929 |
natural language processing systems | 2 | 44.71454766 | 0.004694836 | 0.004845591 |
purchasing | 2 | 10.56621641 | 0.004545455 | 0.008461717 |
websites | 2 | 82.79793797 | 0.004716981 | 0.005511432 |
Keyword | Frequencies | Btw Centrality | Clos Centrality | PageRank Centrality |
---|---|---|---|---|
advertizing | 6 | 125.0898572 | 0.005154639 | 0.016861204 |
advertising | 4 | 102.1836488 | 0.004975124 | 0.013171544 |
marketing communications | 3 | 16.69280952 | 0.004405286 | 0.005786586 |
reinforcement learning | 2 | 62.72847676 | 0.005154639 | 0.006428031 |
search engines | 2 | 4.541524578 | 0.004166667 | 0.005586297 |
advertising campaign | 2 | 38.74213249 | 0.004201681 | 0.005220361 |
online advertising | 2 | 76.30294395 | 0.004405286 | 0.007368908 |
display advertisings | 2 | 13.36106278 | 0.003636364 | 0.007235011 |
Keyword | Frequencies | Btw Centrality | Clos Centrality | PageRank Centrality |
---|---|---|---|---|
optimizations | 4 | 64.48512097 | 0.004672897 | 0.010836125 |
optimization | 3 | 66.44964344 | 0.004255319 | 0.007581942 |
budget control | 2 | 8.772481114 | 0.003389831 | 0.006525159 |
click-through rate | 2 | 13.36106278 | 0.003636364 | 0.007235011 |
Keyword | Frequencies | Btw Centrality | Clos Centrality | PageRank Centrality |
---|---|---|---|---|
competition | 4 | 58.2277428 | 0.004504505 | 0.00980697 |
classifiers | 2 | 34.1691082 | 0.004524887 | 0.005263117 |
competitive advantage | 2 | 3.89417657 | 0.004115226 | 0.005554099 |
planning | 2 | 7.508933566 | 0.00390625 | 0.003154914 |
profitability | 2 | 14.74597559 | 0.003968254 | 0.005656593 |
sustainable development | 2 | 3.708766234 | 0.003508772 | 0.005045295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziakis, C.; Vlachopoulou, M. Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review. Information 2023, 14, 664. https://doi.org/10.3390/info14120664
Ziakis C, Vlachopoulou M. Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review. Information. 2023; 14(12):664. https://doi.org/10.3390/info14120664
Chicago/Turabian StyleZiakis, Christos, and Maro Vlachopoulou. 2023. "Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review" Information 14, no. 12: 664. https://doi.org/10.3390/info14120664
APA StyleZiakis, C., & Vlachopoulou, M. (2023). Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review. Information, 14(12), 664. https://doi.org/10.3390/info14120664