From Potential to Real Threat? The Impacts of Technology Attributes on Licensing Competition—Evidence from China during 2002–2013
Abstract
:1. Introduction
2. Theories and Hypotheses
2.1. Brief Theory Review
2.2. Development of Hypotheses
3. Data and Methods
3.1. Data
3.2. Variables
3.2.1. Dependent Variables
3.2.2. Independent Variables
3.2.3. Control Variables
3.3. Estimation Model
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arora, A.; Fosfuri, A. Licensing the market for technology. J. Econ. Behav. Organ. 2003, 52, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Kollmer, H.; Dowling, M. Licensing as a commercialization strategy for new technology-based firms. Res. Policy 2004, 33, 1141–1151. [Google Scholar] [CrossRef]
- Fosfuri, A. The licensing dilemma: Understanding the determinants of the rate of technology licensing. Strateg. Manag. J. 2006, 27, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Fosfuri, A.; Gambardella, A. Markets for Technology: The Economics of Innovation and Corporate Strategy; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Arora, A.; Fosfuri, A.; Rønde, T. Managing licensing in a market for technology. Manag. Sci. 2013, 59, 1092–1106. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Cockburn, I.; Zhang, L. Deals not done: Sources of failure in the market for idea. Strateg. Manag. J. 2015, 36, 976–986. [Google Scholar] [CrossRef] [Green Version]
- Gambardella, A.; Giuri, P.; Luzzi, A. The market for patents in Europe. Res. Policy 2007, 36, 1163–1183. [Google Scholar] [CrossRef]
- Ceccagnoli, M.; Jiang, L. The Cost of Integrating External Technologies: Supply and Demand Drivers of Value Creation in the Markets for Technology. Strateg. Manag. J. 2013, 34, 404–425. [Google Scholar] [CrossRef]
- Dushnitsky, G.; Klueter, T. Which industries are served by online marketplaces for technology? Res. Policy 2017, 46, 651–666. [Google Scholar] [CrossRef]
- Kani, M.; Motohashi, K. Understanding the technology market for patents: New insights from a licensing survey of Japanese firms. Res. Policy 2012, 41, 226–235. [Google Scholar] [CrossRef]
- Arora, A.; Ceccagnoli, M. Patent protection, complementary assets, and firms’ incentives for technology licensing. Manag. Sci. 2006, 52, 293–308. [Google Scholar] [CrossRef]
- Motohashi, K. Licensing or not licensing? An empirical analysis of the strategic use of patents by Japanese firms. Res. Policy 2008, 37, 1548–1555. [Google Scholar] [CrossRef]
- Pitkethly, R.H. Intellectual property strategy in Japanese and UK companies: Patent licensing decisions and learning opportunities. Res. Policy 2001, 30, 425–442. [Google Scholar] [CrossRef]
- Teece, D.J. Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Res. Policy 1986, 15, 285–305. [Google Scholar] [CrossRef]
- Teece, D.J. Technological change and the nature of the firm. In Technological Change and Economic Theory; Dosi, G., Freeman, C., Nelson, R., Silverberg, G., Soete, L., Eds.; Pinter: London, UK, 1988; pp. 256–281. [Google Scholar]
- Orlando, M.J. Measuring Spillovers from Industrial R&D: On the importance of Geographic and Technological Proximity. Rand J. Econ. 2004, 35, 777–786. [Google Scholar]
- Aldieri, L.; Sena, V.; Vinci, C.P. Domestic R&D Spillovers and Absorptive Capacity: Some Evidence for US, Europe and Japan. Int. J. Prod. Econ. 2018, 198, 38–49. [Google Scholar]
- Contractor, F.J. International Technology Transfer; D.C. Heath: Lexington, MA, USA, 1981. [Google Scholar]
- Haupt, R.; Kloyer, M.; Lange, M. Patent indicators for the technology life cycle development. Res. Policy 2007, 36, 387–398. [Google Scholar] [CrossRef]
- Nerkar, A. Old is gold? The value of temporal exploration in the creation of new knowledge. Manag. Sci. 2003, 49, 211–229. [Google Scholar] [CrossRef]
- Lawton, G. Improved flash memory grows in popularity. Computer 2006, 39, 16–18. [Google Scholar] [CrossRef]
- Contractor, F.J.; Ra, W. How knowledge attributes influence alliance governance choices: A theory development note. J. Int. Manag. 2002, 8, 11–27. [Google Scholar] [CrossRef]
- Cowan, R.; Foray, D. The economics of codification and the diffusion of knowledge. Ind. Corp. Chang. 2000, 6, 595–622. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z. The dual role of local sites in assisting firms with developing technological capabilities: Evidence from China. Int. Bus. Rev. 2013, 22, 63–76. [Google Scholar] [CrossRef]
- Arora, A.; Gambardella, A. The changing technology of technological change: General and abstract knowledge and the division of innovative labour. Res. Policy 1994, 23, 523–532. [Google Scholar] [CrossRef]
- Aghion, P.; Howitt, P. On the macroeconomic effects of major technological change. In General Purpose Technologies and Economic Growth; Helpman, E., Ed.; MIT Press: Cambridge, MA, USA, 1998; pp. 121–144. [Google Scholar]
- Helpman, E.; Trajtenberg, M. A time to sow and a time to reap: Growth based on general purpose technologies. In General Purpose Technologies and Economic Growth; Helpman, E., Ed.; The MIT Press: Cambridge, MA, USA, 1998; pp. 55–83. [Google Scholar]
- Bresnahan, T.F.; Trajtenberg, M. General purpose technologies ‘engines of growth’? J. Econom. 1995, 65, 83–108. [Google Scholar] [CrossRef] [Green Version]
- Singh, K. The impact of technological complexity and interfirm cooperation on business survival. Acad. Manag. J. 1997, 40, 339–367. [Google Scholar]
- Simonin, B.L. Ambiguity and the process of knowledge transfer in strategic alliances. Strateg. Manag. J. 1999, 20, 595–623. [Google Scholar] [CrossRef]
- Li, Y.; Vanhaverbeke, W.; Schoenmakers, W. Exploration and Exploitation in Innovation: Reframing the Interpretation. Creat. Innov. Manag. 2008, 17, 107–126. [Google Scholar] [CrossRef]
- Li-Ying, J.; Wang, Y.; Salomo, S. An inquiry on external technology search through patent inlicensing and firms’ technological innovations: Evidence from China. R&D Manag. 2014, 44, 53–74. [Google Scholar]
- Bainbridge, W.S.; Roco, M.C. Science and technology convergence: With emphasis for nanotechnology-inspired convergence. J. Nanopart. Res. 2016, 18, 211. [Google Scholar] [CrossRef]
- Li-Ying, J.; Wang, Y.; Ning, L. How do dynamic capabilities transform external technologies into firms’ renewed technological resources?—A mediation model. Asia Pac. J. Manag. 2016, 33, 1009–1036. [Google Scholar] [CrossRef] [Green Version]
- Yayavaram, S.; Ahuja, G. Decomposability in knowledge structures and its impact on the usefulness of inventions and knowledge-base malleability. Adm. Sci. Q. 2008, 53, 333–362. [Google Scholar] [CrossRef]
- Heeley, M.B.; Jacobson, R. The recency of technological inputs and financial performance. Strateg. Manag. J. 2008, 29, 723–744. [Google Scholar] [CrossRef]
- Laursen, K.; Leone, M.I.; Torrisi, S. Technological exploration through licensing: New insights from the licensee’s point of view. Ind. Corp. Chang. 2010, 19, 871–897. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Li-Ying, J. The impact of licensed-knowledge attributes on the innovation performance of licensee firms: Evidence from the Chinese electronic industry. J. Technol. Transf. 2013, 38, 699–715. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li-Ying, J. When does inward technology licensing facilitate firms’ NPD performance? A contingency perspective. Technovation 2014, 34, 44–53. [Google Scholar] [CrossRef]
- Hall, B.H.; Ziedonis, R.H. The patent paradox revisited: An empirical study of patenting in the U.S. semiconductor industry, 1979–1995. Rand J. Econ. 2001, 101–128. [Google Scholar] [CrossRef] [Green Version]
- Sampat, B.N.; Mowery, D.C.; Ziedonis, A.A. Changes in university patent quality after the Bayh–Dole act: A re-examination. Int. J. Ind. Organ. 2003, 21, 1371–1390. [Google Scholar] [CrossRef]
- Lerner, J. The importance of patent scope: An empirical analysis. Rand J. Econ. 1994, 25, 319–333. [Google Scholar] [CrossRef]
- Malackowski, J.E.; Barney, J.A. What is patent quality? A merchant banc’s perspective. Les Nouv. 2008, 6, 123–134. [Google Scholar]
- Dang, J.; Motohashi, K. Patent statistics: A good indicator for innovation in China? Patent subsidy program impacts on patent quality. China Econ. Rev. 2015, 35, 137–155. [Google Scholar]
- Fleming, L. Recombinant uncertainty in technological search. Manag. Sci. 2001, 47, 117–132. [Google Scholar] [CrossRef]
- Carayannopoulos, S.; Auster, E.R. External knowledge sourcing in biotechnology through acquisition versus alliance: A KBV approach. Res. Policy 2010, 39, 254–267. [Google Scholar] [CrossRef]
- Almeida, P.; Kogut, B. The exploration of technological diversity and the geographic localization of innovation: Start-up firms in the semiconductor industry. Small Bus. Econ. 1997, 9, 21–31. [Google Scholar] [CrossRef]
- Li-Ying, J.; Wang, Y. Find Them Home or Abroad? The Relative Contribution of International Technology In-licensing to “Indigenous Innovation” in China. Long Range Plan. 2015, 48, 123–134. [Google Scholar]
- Van de Vrande, V.; Vanhaverbeke, W.; Duysters, G. Technology in-sourcing and the creation of pioneering technologies. J. Prod. Innov. Manag. 2011, 28, 974–987. [Google Scholar] [CrossRef]
- Jaffe, A.B. Technological opportunity and spillovers of R&D: Evidence from firms’ patents, profits, and market value. Am. Econ. Rev. 1986, 76, 984–1001. [Google Scholar]
- WIPO. Concept of a Technology Classification for Country Comparisons. 2008. Available online: www.wipo.int/ipstats/en/statistics/patents (accessed on 24 June 2021).
- Greene, W. Functional forms for the negative binomial model for count data. Econ. Lett. 2008, 99, 585–590. [Google Scholar] [CrossRef]
- Cameron, C.; Trivedi, P. Microeconometrics: Methods and Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Hausman, J.A.; Griliches, Z. Econometric models for count data with an application to the patents-R&D relationship. Econ. Pol. Wkly. 1984, 27, 909–938. [Google Scholar]
- Stock, J.H.; Watson, M.W. Introduction to Econometrics (3rd Updated Edition, Global Edition). Available online: https://wps.pearsoned.com/wps/media/objects/11422/11696965/answerstoexercises3eu/Stock_Watson_3U_AnswersToReviewTheConcepts.pdf (accessed on 24 June 2021).
- Zhang, Q. Advanced Econometrics and Stata Application, 2nd ed.; Higher Education Press: Beijing, China, 2014. [Google Scholar]
Variables | Mean | Std. Dev. | ALC | Patenting Capacity | Firm Age | Tech Width | Licensing Demands | Licensor Type | PTC | Generality | Complexity | Newness |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual licensing competition (ALC) | 2.501 | 8.303 | 1 | |||||||||
R&D capacity | 5.596 | 2.503 | 0.0041 | 1 | ||||||||
Organization age | 7.432 | 7.363 | 0.0081 | 0.617 | 1 | |||||||
Tech width | 3.832 | 2.551 | −0.0294 | 0.735 | 0.6 | 1 | ||||||
Licensing demands | 13.22 | 25.16 | 0.37 | 0.0965 | −0.143 | −0.228 | 1 | |||||
Licensor type | 0.681 | 0.466 | 0.0515 | −0.382 | −0.558 | −0.527 | 0.196 | 1 | ||||
Potential tech competition (PTC) | 4.703 | 1.767 | 0.322 | 0.059 | 0.0238 | 0.044 | 0.277 | 0.0244 | 1 | |||
generality | 4.91 | 0.698 | 0.0398 | −0.0537 | −0.0533 | −0.0682 | −0.0044 | 0.104 | −0.0314 | 1 | ||
complexity | 2.51 | 1.729 | 0.0294 | −0.0212 | 0.022 | −0.0206 | 0.0126 | −0.0351 | 0.0565 | 0.0338 | 1 | |
newness | 13.51 | 4.489 | −0.105 | −0.14 | 0.165 | 0.367 | −0.55 | −0.328 | 0.0212 | −0.0065 | 0.0567 | 1 |
Variables | Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | Model (7) | Model (8) |
---|---|---|---|---|---|---|---|---|
R&D capacity | 0.157 *** | 0.249 *** | 0.192 *** | 0.142 *** | 0.192 *** | 0.193 *** | 0.146 *** | 0.146 *** |
(4.51) | (8.94) | (8.11) | (5.80) | (8.12) | (8.22) | (5.87) | (5.93) | |
Licensor type | 0.0432 | −0.0295 | 0.365 *** | 0.297 *** | 0.360 *** | 0.363 *** | 0.324 *** | 0.317 *** |
(0.80) | (−0.74) | (10.13) | (8.05) | (9.85) | (10.08) | (8.98) | (8.70) | |
Organization age | 0.000171 | 0.0297 *** | 0.0249 *** | 0.0280 *** | 0.0249 *** | 0.0245 *** | 0.0283 *** | 0.0279 *** |
(0.05) | (11.40) | (11.07) | (12.36) | (11.06) | (10.88) | (12.41) | (12.26) | |
Tech width | −0.226 *** | −0.366 *** | −0.240 *** | −0.205 *** | −0.240 *** | −0.240 *** | −0.205 *** | −0.204 *** |
(−6.00) | (−12.29) | (−9.31) | (−7.79) | (−9.33) | (−9.37) | (−7.69) | (−7.73) | |
Chemistry | 0.993 *** | 0.690 *** | 0.613 *** | 0.696 *** | 0.602 *** | 0.593 *** | 0.694 *** | 0.660 *** |
(15.14) | (10.81) | (9.89) | (10.49) | (9.54) | (9.46) | (10.88) | (10.06) | |
Electrical engineering | 0.600 *** | 0.686 *** | 0.0460 | 0.0918 | 0.0419 | 0.0321 | 0.0352 | 0.0122 |
(10.49) | (10.51) | (0.71) | (1.38) | (0.65) | (0.50) | (0.54) | (0.19) | |
Instruments | 1.038 *** | 1.599 *** | 1.074 *** | 1.163 *** | 1.070 *** | 1.062 *** | 1.145 *** | 1.128 *** |
(14.97) | (20.46) | (14.38) | (15.27) | (14.34) | (14.26) | (15.30) | (15.10) | |
Mechanical engineering | −0.634 *** | −0.0644 | 0.182 ** | 0.307 *** | 0.176 ** | 0.180 ** | 0.298 *** | 0.294 *** |
(−9.12) | (−0.85) | (2.50) | (4.04) | (2.41) | (2.47) | (3.99) | (3.91) | |
Process engineering | −0.0840 | 0.322 *** | 0.432 *** | 0.533 *** | 0.426 *** | 0.424 *** | 0.524 *** | 0.510 *** |
(−1.27) | (4.60) | (6.47) | (7.62) | (6.35) | (6.32) | (7.63) | (7.38) | |
Licensing demand | 0.0287 *** | 0.0209 *** | 0.0194 *** | 0.0208 *** | 0.0208 *** | 0.0192 *** | 0.0190 *** | |
(51.63) | (39.39) | (30.02) | (39.21) | (39.78) | (29.43) | (29.58) | ||
Potential tech competition (PTC) | 0.558 *** | 0.572 *** | 0.533 *** | 0.592 *** | 0.398 *** | 0.421 *** | ||
(63.00) | (60.91) | (10.09) | (42.27) | (14.77) | (6.72) | |||
Generality | 0.0160 | −0.00784 | 0.00156 | |||||
(0.94) | (−0.12) | (0.02) | ||||||
Complexity | 0.0227 *** | 0.0884 *** | 0.118 *** | |||||
(3.29) | (3.22) | (4.12) | ||||||
Newness | −0.0340 *** | −0.105 *** | −0.109 *** | |||||
(−9.03) | (−9.62) | (−10.01) | ||||||
PTC*generality | 0.00498 | 0.00366 | ||||||
(0.47) | (0.32) | |||||||
PTC*complexity | −0.0130 *** | −0.0181 *** | ||||||
(−2.90) | (−3.85) | |||||||
PTC*newness | 0.0135 *** | 0.0141 *** | ||||||
(7.37) | (7.67) | |||||||
licyear2003 | 0.459 *** | −0.750 *** | −0.825 *** | −0.767 *** | −0.822 *** | −0.832 *** | −0.740 *** | −0.740 *** |
(2.71) | (−3.13) | (−3.18) | (−3.04) | (−3.17) | (−3.20) | (−2.97) | (−2.96) | |
licyear2004 | −0.389 | −0.933 *** | −0.714 ** | −0.744 ** | −0.715 ** | −0.715 ** | −0.725 ** | −0.727 ** |
(−1.63) | (−3.36) | (−2.32) | (−2.51) | (−2.32) | (−2.31) | (−2.49) | (−2.48) | |
licyear2005 | 1.781 *** | 1.196 *** | 1.408 *** | 1.398 *** | 1.407 *** | 1.407 *** | 1.406 *** | 1.407 *** |
(10.45) | (5.30) | (5.55) | (5.64) | (5.55) | (5.51) | (5.83) | (5.79) | |
licyear2006 | −0.560 * | −0.584 | −0.0697 | −0.134 | −0.0681 | −0.0774 | −0.152 | −0.162 |
(−1.67) | (−1.41) | (−0.14) | (−0.27) | (−0.14) | (−0.15) | (−0.31) | (−0.33) | |
licyear2007 | 0.750 *** | 0.818 *** | 1.247 *** | 1.222 *** | 1.251 *** | 1.238 *** | 1.232 *** | 1.228 *** |
(3.90) | (4.10) | (5.43) | (5.45) | (5.44) | (5.36) | (5.56) | (5.49) | |
licyear2008 | 1.386 *** | 1.235 *** | 1.094 *** | 1.058 *** | 1.094 *** | 1.089 *** | 1.057 *** | 1.052 *** |
(9.37) | (7.37) | (5.55) | (5.54) | (5.54) | (5.50) | (5.60) | (5.54) | |
licyear2009 | 2.139 *** | 1.554 *** | 1.405 *** | 1.370 *** | 1.406 *** | 1.401 *** | 1.375 *** | 1.371 *** |
(14.35) | (9.41) | (7.18) | (7.22) | (7.17) | (7.12) | (7.35) | (7.28) | |
licyear2010 | 2.055 *** | 1.243 *** | 1.046 *** | 1.024 *** | 1.047 *** | 1.039 *** | 1.025 *** | 1.019 *** |
(13.92) | (7.52) | (5.37) | (5.42) | (5.36) | (5.30) | (5.51) | (5.43) | |
licyear2011 | 1.820 *** | 1.291 *** | 1.120 *** | 1.115 *** | 1.122 *** | 1.109 *** | 1.120 *** | 1.110 *** |
(12.70) | (7.88) | (5.76) | (5.93) | (5.77) | (5.67) | (6.04) | (5.94) | |
licyear2012 | 1.566 *** | 1.255 *** | 1.010 *** | 1.005 *** | 1.012 *** | 1.001 *** | 0.995 *** | 0.988 *** |
(10.97) | (7.69) | (5.17) | (5.32) | (5.18) | (5.10) | (5.33) | (5.25) | |
licyear2013 | 2.712 *** | 1.943 *** | 1.802 *** | 1.697 *** | 1.804 *** | 1.789 *** | 1.697 *** | 1.682 *** |
(19.22) | (11.85) | (9.32) | (9.04) | (9.32) | (9.21) | (9.16) | (9.02) | |
_cons | −1.643 *** | −1.860 *** | −4.938 *** | −4.579 *** | −4.890 *** | −5.150 *** | −3.546 *** | −3.779 *** |
(−10.21) | (−10.18) | (−22.17) | (−19.63) | (−12.86) | (−22.00) | (−13.11) | (−8.86) | |
lnalpha | ||||||||
_cons | 1.199 *** | 0.834 *** | 0.175 *** | 0.166 *** | 0.174 *** | 0.174 *** | 0.159 *** | 0.156 *** |
(73.84) | (49.12) | (7.24) | (6.78) | (7.20) | (7.23) | (6.52) | (6.44) | |
Log likelihood | −41187.97 | −39053.468 | −35421.642 | −35350.569 | −35420.641 | −35410.247 | −35311.556 | −35291.895 |
Wald chi square | 3454.38 | 6725.87 | 13826.44 | 14402.36 | 14050.15 | 13947.21 | 14501.01 | 14774.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Li-Ying, J.; Wang, Y.; Chen, X. From Potential to Real Threat? The Impacts of Technology Attributes on Licensing Competition—Evidence from China during 2002–2013. Information 2021, 12, 260. https://doi.org/10.3390/info12070260
Li M, Li-Ying J, Wang Y, Chen X. From Potential to Real Threat? The Impacts of Technology Attributes on Licensing Competition—Evidence from China during 2002–2013. Information. 2021; 12(7):260. https://doi.org/10.3390/info12070260
Chicago/Turabian StyleLi, Ming, Jason Li-Ying, Yuandi Wang, and Xiangdong Chen. 2021. "From Potential to Real Threat? The Impacts of Technology Attributes on Licensing Competition—Evidence from China during 2002–2013" Information 12, no. 7: 260. https://doi.org/10.3390/info12070260
APA StyleLi, M., Li-Ying, J., Wang, Y., & Chen, X. (2021). From Potential to Real Threat? The Impacts of Technology Attributes on Licensing Competition—Evidence from China during 2002–2013. Information, 12(7), 260. https://doi.org/10.3390/info12070260