Constructing Crop Portraits Based on Graph Databases Is Essential to Agricultural Data Mining
Abstract
:1. Introduction
2. Related Work
3. Crop Portrait Model Based on Graph Databases
3.1. Data Collection
3.2. Entity-Relationship Definition
- Acro = {id, name, alias, susceptible disease, nutrients, fertilizer, place of production}
- Apes = {id, name, alias, susceptible crops}
- Adis = {id, name, alias, effect}
3.3. Named Entity Recognition
3.4. Crop Portrait Storage and Visualization
4. Data Mining Based on the Crop Portrait
4.1. Basic Properties of the Crop Portrait Graph
4.2. Relative Importance of Different Crop Entities
4.3. Occurrence Trend of Crop Diseases and Pests
4.4. Interconnection within Crop Diseases and Pests
4.5. Non-One-to-One Relation between Pesticides and Diseases and Pests
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, B.; Li, X.; Bian, G. A Survey of Research Hotspots and Frontier Trends of Recommendation Systems from the Perspective of Knowledge Graph. Expert Syst. Appl. 2021, 165, 113764. [Google Scholar] [CrossRef]
- Majumdar, J.; Naraseeyappa, S.; Ankalaki, S. Analysis of Agriculture Data Using Data Mining Techniques: Application of Big Data. J. Big Data 2017, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Ngo Vuong, M.; Kechadi, M.-T. Crop Knowledge Discovery Based on Agricultural Big Data Integration. In Proceedings of the 4th International Conference on Machine Learning and Soft Computing, Haiphong City, Vietnam, 17–19 January 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 46–50. [Google Scholar]
- Yıldırım, M.; Okay, F.Y.; Özdemir, S. Big Data Analytics for Default Prediction Using Graph Theory. Expert Syst. Appl. 2021, 176, 114840. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, S.; Xiong, N.N.; Guo, W. A Survey on Knowledge Graph Embedding: Approaches, Applications and Benchmarks. Electronics 2020, 9, 750. [Google Scholar] [CrossRef]
- Tiwari, S.; Al-Aswadi, F.N.; Gaurav, D. Recent Trends in Knowledge Graphs: Theory and Practice. Soft Comput. 2021, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, X.; Zheng, H. Research on Contextual Recommendation System of Agricultural Science and Technology Resource Based on User Portrait. J. Phys. Conf. Ser. 2020, 1693, 012186. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.N. Ontology-Based Data Acquisition Model Development for Agricultural Open Data Platforms and Implementation of Owl2mvc Tool. Comput. Electron. Agric. 2020, 175, 105589. [Google Scholar] [CrossRef]
- Chen, X.; Jia, S.; Xiang, Y. A Review: Knowledge Reasoning over Knowledge Graph. Expert Syst. Appl. 2020, 141, 112948. [Google Scholar] [CrossRef]
- Lange, M.C.; Lemay, D.G.; German, J.B. A Multi-Ontology Framework to Guide Agriculture and Food towards Diet and Health. J. Sci. Food Agric. 2007, 87, 1427–1434. [Google Scholar] [CrossRef]
- Brožová, H.; Šubrt, T.; Bartoška, J. Knowledge Maps in Agriculture and Rural Development. Agric. Econ. 2008, 54, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.L.; He, Q.Y.; Ping, Q.I.A.N.; Ze, L.I. Construction of the Ontology-Based Agricultural Knowledge Management System. J. Integr. Agric. 2012, 11, 700–709. [Google Scholar] [CrossRef]
- Qi, C.; Song, Q.; Zhang, P.; Yuan, H. Cn-Makg: China Meteorology and Agriculture Knowledge Graph Construction Based on Semi-Structured Data. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Singapore, 6–8 June 2018. [Google Scholar]
- Chen, Y.; Kuang, J.; Cheng, D.; Zheng, J.; Gao, M.; Zhou, A. Agrikg: An Agricultural Knowledge Graph and Its Applications. In Complexity in Polish Phonotactics; Springer: Singapore, 2019; pp. 533–537. [Google Scholar]
- Lagos-Ortiz, K.; Salas-Zárate, M.D.P.; Paredes-Valverde, M.A.; García-Díaz, J.A.; Valencia-García, R. Agrient: A Knowledge-Based Web Platform for Managing Insect Pests of Field Crops. Appl. Sci. 2020, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Qiao, B.; Zou, Z.; Huang, Y.; Fang, K.; Zhu, X.; Chen, Y. A Joint Model for Entity and Relation Extraction Based on Bert. Neural Comput. Appl. 2021, 1–11. [Google Scholar] [CrossRef]
- Nikam, P.; Sachin, B.; Anuj, S. Neo4j Graph Database Implementation for Linkedin. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2020, 1, 339–342. [Google Scholar]
- Abad-Navarro, F.; Bernabé-Diaz, J.A.; García-Castro, A.; Fernandez-Breis, J.T. Semantic Publication of Agricultural Scientific Literature Using Property Graphs. Appl. Sci. 2020, 10, 861. [Google Scholar] [CrossRef] [Green Version]
- Stothers, J.; Andrew, N. Can Neo4j Replace Postgresql in Healthcare? AMIA Jt. Summits Transl. Sci. 2020, 2020, 646–653. [Google Scholar]
- Sen, S.; Mehta, A.; Ganguli, R.; Sen, S. Recommendation of Influenced Products Using Association Rule Mining: Neo4j as a Case Study. Comput. Sci. 2021, 2, 74. [Google Scholar]
- Tsoulias, K.; Palaiokrassas, G.; Fragkos, G.; Litke, A.; Varvarigou, T.A. A Graph Model Based Blockchain Implementation for Increasing Performance and Security in Decentralized Ledger Systems. IEEE Access 2020, 8, 130952–130965. [Google Scholar] [CrossRef]
- Espinoza-Arias, P.; Fernández-Ruiz, M.J.; Morlán-Plo, V.; Notivol-Bezares, R.; Oscar, C. The Zaragoza’s Knowledge Graph: Open Data to Harness the City Knowledge. Information 2020, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yang, H.; Li, J.; Kolmanič, S. Preliminary Study on the Knowledge Graph Construction of Chinese Ancient History and Culture. Information 2020, 11, 186. [Google Scholar] [CrossRef] [Green Version]
- Mece Principle. Available online: https://wikimili.com/en/MECE_principle (accessed on 26 May 2021).
- Chen, P.P.S. The Entity-Relationship Model—Toward a Unified View of Data. ACM Trans. Database Syst. 1976, 1, 9–36. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Peng, C.; Ni, S.; Shen, S. Scenario-Entity Analysis Based on an Entity-Relationship Model: Revisiting Crime Reconstruction. Forensic Sci. Int. 2019, 302, 109923. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, X.H.; Jia, L.; Chen, X.; Liu, L.; Zhang, Y.E. Recognition of Crops, Diseases and Pesticides Named Entities in Chinese Based on Conditional Random Fields. Trans. Chin. Soc. Agric. Mach. 2017, 48, 178–185. [Google Scholar]
- Wang, Y.; Yu, Z.; Liu, J.L. The Characteristics and Prevention of Strawberry Root Rot. Rural. Sci. Technol. 2017, 12, 47–48. [Google Scholar]
- Yang, Y.R.; Liu, C.F. Occurrence and Control of Strawberry Anthracnose and Root Rot. Jilin Veg. 2009, 1, 38–39. [Google Scholar]
- Zhang, J.Q. Symptoms and Control Measures of Strawberry Root Rot and Anthracnose. Anhui Agric. Sci. Bull. 2012, 18, 94–95. [Google Scholar]
- Zhao, J.N.; Ma, Z.; Liu, Z.P.; Shang, Q.X.; Zhao, X.Y.; Wei, Y.M. Pestalotiopsis Clavispora Causing Leaf Spot on Strawberry. Mycosystema 2016, 35, 114–120. [Google Scholar]
- Wang, F.; Han, H.Z.; Wang, X.L.; Zhang, L.H. Common Diseases and Pests of Strawberry in Northern Jiangsu Province and Their Comprehensive Control. Anhui Agric. Sci. Bull. 2020, 26, 88–90. [Google Scholar]
Crops | Amount of Q&A Data | Amount of Popular Science Data |
---|---|---|
Scallion | 409 | 7 |
Ginger | 523 | 7 |
Peanut | 629 | 7 |
Orange | 946 | 7 |
Grape | 1810 | 7 |
Banana | 2708 | 7 |
Mango | 3924 | 7 |
Chili | 5520 | 7 |
Tomato | 5600 | 7 |
Cucumber | 6115 | 7 |
Soybean | 6361 | 7 |
Strawberry | 6372 | 7 |
Potato | 7256 | 7 |
Rice | 8455 | 7 |
Apple | 10,625 | 7 |
Crop | Strawberry |
---|---|
Q&A data | |
Time | Four hours ago. |
Question | What is the blackening of stolons? |
Answer 1 | Anthracnose harm. It is recommended to use difenoconazole, bromoxynil, prochloraz or picoxystrobin, etc. to spray for control. |
Answer 2 | Anthracnose. Use difenoconazole, pyraclostrobin, prochloraz, bromoxynil and other control. |
Popular science data | |
Basic introduction | Strawberry is also called berry, ground berry, ground fruit, and red berry. It is native to South America. Strawberry is moderately sweet and sour, aromatic and delicious, soft and juicy, and is known as the “Queen of Fruits”. It is deeply loved by consumers and has certain medicinal and healthcare functions. |
Place of production | China is the country with the most abundant wild strawberry resources in the world. The main producing areas of strawberry are located in eastern coastal areas such as Liaoning, Hebei, Shandong, Jiangsu, Shanghai, and Zhejiang. |
Nutrient content | Each 100 g strawberry contains edible part 97 g, water 91.3 g, energy 30 kcal (126 kJ), protein 1 g, fat 0.2 g, carbohydrate 7.1 g, dietary fiber 1.1 g, ash 0.4 g, thiamine 0.02 µg, cholesterol 0 mg, riboflavin 0.03 mg, carotene 30 mg, niacin 0.3 mg, retinol 0 mg, vitamin A 5 mg, vitamin C 47 mg, and vitamin E 0.71 mg. |
ID | 1 |
---|---|
Name | Strawberry |
Alias | Berry/Ground berry/Ground fruit/Red berry |
Frequent diseases and pests | Root rot/Thrips/Aphids/Mites/Anthracnose/Leaf spot/Snake eye/Powdery mildew/Gray mold |
Nutrient content | Carbohydrates/Carotene/Vitamin C/Malic acid/Anthocyanin |
Fertilizer | Organic fertilizer/Farmyard manure/Potassium sulfate/Diammonium phosphate/Urea |
Place of production | Liaoning/Hebei/Shandong/Jiangsu/Shanghai/Zhejiang/Sichuan/Xinjiang |
ID | 1 |
---|---|
Name | SuManTong |
Alias | DaManJing/DaManTong/QianNiuXing (in Chinese) |
Efficacy | Mites/Aphids/Whiteflies/Thrips |
ID | 1 |
---|---|
Name | JiMa |
Alias | JiChong (in Chinese) |
Susceptible crops | Strawberry/Banana/Grape/Mango/Apple |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.-X.; Zhang, B.-K.; Wang, Y.-X.; Luo, H.-Q.; Li, X. Constructing Crop Portraits Based on Graph Databases Is Essential to Agricultural Data Mining. Information 2021, 12, 227. https://doi.org/10.3390/info12060227
Shi Y-X, Zhang B-K, Wang Y-X, Luo H-Q, Li X. Constructing Crop Portraits Based on Graph Databases Is Essential to Agricultural Data Mining. Information. 2021; 12(6):227. https://doi.org/10.3390/info12060227
Chicago/Turabian StyleShi, Yue-Xin, Bo-Kai Zhang, Yong-Xiang Wang, Han-Qian Luo, and Xiang Li. 2021. "Constructing Crop Portraits Based on Graph Databases Is Essential to Agricultural Data Mining" Information 12, no. 6: 227. https://doi.org/10.3390/info12060227
APA StyleShi, Y. -X., Zhang, B. -K., Wang, Y. -X., Luo, H. -Q., & Li, X. (2021). Constructing Crop Portraits Based on Graph Databases Is Essential to Agricultural Data Mining. Information, 12(6), 227. https://doi.org/10.3390/info12060227