Calculated vs. Ad Hoc Publics in the #Brexit Discourse on Twitter and the Role of Business Actors
Abstract
:1. Introduction
- RQ1:
- Is the #Brexit discourse on Twitter dominated by calculated publics or ad hoc publics?
- RQ2:
- What role did non-media business accounts play in the #Brexit discourse on Twitter?
2. Background and Theoretical Context
3. Research Method
3.1. Empirical Context
3.2. Methodology
4. Findings
4.1. Descriptive Analytics
4.2. Network Analytics
4.2.1. Topological Analysis
4.2.2. Centrality Analysis
4.3. Content Analytics
4.3.1. Word Analysis
4.3.2. Hashtag Analysis
4.3.3. Peak Detection Analysis
4.3.4. Analysis of Non-media Business Twitter Activity
5. Discussion
5.1. RQ1: Is the #Brexit Discourse on Twitter Dominated by Calculated Publics or Ad Hoc Publics?
5.2. RQ2: What Role Did Non-Media Business Accounts Play in the #Brexit Discourse on Twitter?
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BC | Betweenness centrality |
Brexit | The referendum regarding UK membership of the European Union |
CPA | Corporate political activity |
CSR | Corporate social responsibility |
CWT | Continuous wavelet transform |
EC | European community |
EU | European Union |
IC4 | Irish Centre for Cloud Computing and Commerce |
IDA | Industrial Development Authority |
ML | Machine learning |
NHS | UK National Health Service |
SPI | Socio-political involvement |
UK | United Kingdom |
UKIP | United Kingdom Independence Party |
References
- Hoffman, D.L.; Novak, T.P. Social Media Strategy. In Handbook of Marketing Strategy; Venkatesh, S., Carpenter, G.S., Eds.; Edward Elgar: Cheltenham, UK, 2012; pp. 198–216. [Google Scholar]
- Ausserhofer, J.; Maireder, A. National politics on Twitter: Structures and topics of a networked public sphere. Inf. Commun. Soc. 2013, 16, 291–314. [Google Scholar] [CrossRef]
- Bruns, A.; Burgess, J.E. The use of Twitter hashtags in the formation of ad hoc publics. In Proceedings of the 6th European Consortium for Political Research (ECPR) General Conference, Reykjavik, Iceland, 24–27 August 2011. [Google Scholar]
- Small, T. What the Hashtag? A Content Analysis of Canadian Politics on Twitter. Inf. Commun. Soc. 2011, 14, 872–895. [Google Scholar] [CrossRef]
- Wells, C.; Shah, D.V.; Pevehouse, J.C.; Yang, J.; Pelled, A.; Boehm, F.; Lukito, J.; Ghosh, S.; Schmidt, J.L. How Trump drove coverage to the nomination: Hybrid media campaigning. Political Commun. 2016, 33, 669–676. [Google Scholar] [CrossRef]
- Chadwick, A. Digital network repertoires and organizational hybridity. Political Commun. 2007, 24, 283–301. [Google Scholar] [CrossRef]
- Papacharissi, Z. A Private Sphere: Democracy in a Digital Age; Polity Press: Cambridge, UK, 2010. [Google Scholar]
- Bruns, A.; Burgess, J. Twitter hashtags from ad hoc to calculated publics. In Hashtag Publics: The Power and Politics of Discursive Networks; Peter Lang Publishing Inc.: New York, NY, USA, 2015; pp. 13–28. [Google Scholar]
- Khatua, A.; Khatua, A. Leave or Remain? Deciphering Brexit Deliberations on Twitter. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 428–433. [Google Scholar]
- Llewellyn, C.; Cram, L. Brexit? Analyzing Opinion on the UK-EU Referendum within Twitter. In Proceedings of the THE 10th International AAAI Conference on Web and Social Media (ICWSM-16), Cologne, Germany, 17–20 May 2016; AAAI Press: Palo Alto, CA, USA, 2016; pp. 760–761. [Google Scholar]
- Mangold, L. Should I Stay or Should I go: Clash of Opinions in the Brexit Twitter Debate. Master’s Thesis, University of Oxford, Oxford, UK, September 2016. [Google Scholar]
- Digital repository of Slovenian Research Organisations. Available online: https://dirros.openscience.si/Dokument.php?id=6351&lang=eng (accessed on 9 September 2020).
- Mora-Cantallops, M.; Sánchez-Alonso, S.; Visvizi, A. The influence of external political events on social networks: The case of the Brexit Twitter Network. J. Ambient. Intell. Humaniz. Comput. 2019, 1–13. [Google Scholar] [CrossRef]
- Byrne, D.; Cavallini, A.; McDermott, R.; Hürlimann, M.; Caroli, F.; Khaled, M.B.; Freitas, A.; Zarrouk, M.; Vasiliu, L.; Davis, B.; et al. In or out? In Proceedings of the Real-Time Monitoring of BREXIT Sentiment on Twitter, SEMANTiCS, Leipzig, Germany, 12–15 September 2016. [Google Scholar]
- Handschuh, S.; Hürlimann, M.; Cortis, K.; Freitas, A.; Davis, B.; Fernández, S. A Twitter sentiment gold standard for the Brexit referendum. In Proceedings of the SEMANTiCS, Leipzig, Germany, 12–15 September 2016. [Google Scholar]
- Lansdall-Welfare, T.; Dzogang, F.; Cristianini, N. Change-point Analysis of the Public Mood in UK Twitter during the Brexit Referendum. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 434–439. [Google Scholar]
- Lynn, T.; Kilroy, S.; van der Werff, L.; Healy, P.; Hunt, G.; Venkatagiri, S.; Morrison, J. Towards a general research framework for social media research using big data. In Proceedings of the IEEE Professional Communication Conference (IPCC) 2015, Limerick, Ireland, 12–15 July 2015; pp. 1–8. [Google Scholar]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horizons 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Peters, K.; Chen, Y.; Kaplan, A.M.; Ognibeni, B.; Pauwels, K. Social media metrics-A framework and guidelines for managing social media. J. Interact. Mark. 2013, 27, 281–298. [Google Scholar] [CrossRef]
- Kietzmann, J.H.; Hermkens, K.; McCarthy, I.P.; Silvestre, B.S. Social media? Get serious! Understanding the functional building blocks of social media. Bus. Horizons 2011, 54, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Kane, G.C.; Alavi, M.; Labianca, G.J.; Borgatti, S. What’s different about social media networks? A framework and research agenda. MIS Q. 2012, 38, 275–304. [Google Scholar] [CrossRef] [Green Version]
- Twitter. Selected Company Metrics and Financials. Available online: https://s22.q4cdn.com/826641620/files/doc_financials/2020/q2/Q2-2020-Selected-Financials-and-Metrics.pdf (accessed on 1 September 2020).
- Jansen, B.J.; Zhang, M.; Sobel, K.; Chowdury, A. Twitter power: Tweets as electronic word of mouth. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 2169–2188. [Google Scholar] [CrossRef]
- Java, A.; Song, X.; Finin, T.; Tseng, B. Why we twitter: Understanding microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, San Jose, CA, USA, 12 August 2007; pp. 56–65. [Google Scholar]
- Zhao, D.; Rosson, M.B. How and Why People Twitter: The Role That Micro-Blogging Plays in Informal Communication at Work. In Proceedings of the ACM 2009 International Conference on Supporting Group Work, Sanibel Island, FL, USA, 10–13 May 2009; pp. 243–252. [Google Scholar]
- Stieglitz, S.; Dang-Xuan, L.; Bruns, A.; Neuberger, C. Social Media Analytics. Wirtschaftsinformatik 2014, 56, 101–109. [Google Scholar] [CrossRef]
- Boulianne, S. Does Internet use affect engagement? A meta-analysis of research. Political Commun. 2009, 26, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Hirzalla, F.; Van Zoonen, L.; De Ridder, J. Internet use and political participation: Reflections on the mobilization/normalization controversy. Inf. Soc. 2010, 27, 1–15. [Google Scholar] [CrossRef]
- Norris, P. Democratic Phoenix: Reinventing Political Activism; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Enjolras, B.; Steen-Johnsen, K.; Wollebæk, D. Social media and mobilization to offline demonstrations: Transcending participatory divides? New Media Soc. 2013, 15, 890–908. [Google Scholar] [CrossRef] [Green Version]
- Dalton, R.J. Partisan mobilization, cognitive mobilization and the changing American electorate. Elect. Stud. 2007, 26, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.K.; Lusoli, W.; Ward, S. Online Participation in the UK: Testing a ‘Contextualised’ Model of Internet Effects. Br. J. Polit. Int. Relat. 2005, 7, 561–583. [Google Scholar] [CrossRef]
- Chadwick, A. The Hybrid Media System: Politics and Power; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Chadwick, A.; Dennis, J. Social media, professional media and mobilisation in contemporary Britain: Explaining the strengths and weaknesses of the Citizens’ Movement 38 Degrees. Polit. Stud. 2017, 65, 42–60. [Google Scholar] [CrossRef] [Green Version]
- Kreiss, D. Seizing the moment: The presidential campaigns’ use of Twitter during the 2012 electoral cycle. New Media Soc. 2016, 18, 1473–1490. [Google Scholar] [CrossRef]
- Broersma, M.; Graham, T. Social media as beat: Tweets as a news source during the 2010 British and Dutch elections. J. Pract. 2012, 6, 403–419. [Google Scholar] [CrossRef]
- Parmelee, J.H. The agenda-building function of political tweets. New Media Soc. 2014, 16, 434–450. [Google Scholar] [CrossRef] [Green Version]
- Freelon, D.; Karpf, D. Of big birds and bayonets: Hybrid Twitter interactivity in the 2012 Presidential debates. Inf. Commun. Soc. 2015, 18, 390–406. [Google Scholar] [CrossRef]
- Jungherr, A. The logic of political coverage on Twitter: Temporal dynamics and content. J. Commun. 2014, 64, 239–259. [Google Scholar] [CrossRef]
- Quinn, M.; Lynn, T.; Joll, S.S.; Nair, B. Domestic Water Charges in Ireland-Issues and Challenges Conveyed through Social Media. Water Resour. Manag. 2016, 30, 3577–3591. [Google Scholar] [CrossRef]
- The Atlantic. Available online: https://www.theatlantic.com/technology/archive/2016/11/election-bots/506072/ (accessed on 1 September 2020).
- Persily, N. Can Democracy Survive the Internet? J. Democr. 2017, 28, 63–76. [Google Scholar] [CrossRef]
- Suiter, J.; Nair, B.; Lynn, T. The role of social media in driving participation and engagement in referendums. ECIU Workshop—Menace or Blessing? In Proceedings of the Role of Direct Democracy in the Process of Political Representation, Frankfurt, Germany, 6 April 2017. [Google Scholar]
- Lugovi, S.; Ahmed, W. An Analysis of Twitter Usage Among Startups in Europe. In Proceedings of the May 5th International Conference The Future of Information Sciences (INFuture), Zagreb, Croatia, 11–13 November 2015; pp. 299–308. [Google Scholar]
- Rybalko, S.; Seltzer, T. Dialogic communication in 140 characters or less: How Fortune 500 companies engage stakeholders using Twitter. Public Relat. Rev. 2010, 36, 336–341. [Google Scholar] [CrossRef]
- Wamba, S.F.; Carter, L. Social media tools adoption and use by SMEs: An empirical study. In Social Media and Networking: Concepts, Methodologies, Tools, and Applications; Wamba, S.F., Carter, L., Eds.; IGI Global: Philadelphia, PA, USA, 2016; pp. 791–806. [Google Scholar]
- Dahlsrud, A. How corporate social responsibility is defined: An analysis of 37 definitions. Corp. Soc. Responsib. Environ. Manag. 2008, 15, 1–13. [Google Scholar] [CrossRef]
- Baysinger, B.D. Domain maintenance as an objective of business political activity: An expanded typology. Acad. Manag. Rev. 1984, 9, 248–258. [Google Scholar] [CrossRef]
- Nalick, M.; Josefy, M.; Zardkoohi, A.; Bierman, L. Corporate Sociopolitical Involvement: A Reflection of Whose Preferences? Acad. Manag. Perspect. 2016, 30, 384–403. [Google Scholar] [CrossRef]
- van Dijck, J. The Culture of Connectivity: A Critical History of Social Media; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Butler, D.; Ranney, A. Referendums Around the World: The Growing Use of Direct Democracy; American Enterprise Institute: Washington, DC, USA, 1994. [Google Scholar]
- Uleri, P.V.; Gallagher, M. (Eds.) The Referendum Experience in Europe; Palgrave Macmillan: London, UK, 2016. [Google Scholar]
- Gallagher, M. Elections and referendums. In Comparative Politics; Caramani, D., Ed.; Oxford University Press: Oxford, UK, 2011; pp. 181–197. [Google Scholar]
- Schuck, A.R.-T.; de Vreese, C.H. Public support for referendums in Europe: A cross-national comparison in 21 countries. Elect. Stud. 2015, 38, 149–158. [Google Scholar] [CrossRef]
- Office of National Statistics. Internet Access—Households and Individuals: 2016. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/householdcharacteristics/homeinternetandsocialmediausage/bulletins/internetaccesshouseholdsandindividuals/2016 (accessed on 1 September 2020).
- Statista. 2017. Age Distribution of Twitter Users in Great Britain from May 2013 to July 2016. Available online: https://www.statista.com/statistics/278320/age-distribution-of-twitter-users-in-great-britain/ (accessed on 1 September 2020).
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.A.; Sharma, A.; Gupta, P.; Lin, J. Information network or social network?: The structure of the Twitter follow graph. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, South Korea, 7 April 2014; pp. 493–498. [Google Scholar]
- Cha, M.; Haddadi, H.; Benevenuto, F.; Gummadi, P.K. Measuring user influence in Twitter: The million follower fallacy. In Proceedings of the 4th Int’l AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010; pp. 10–17. [Google Scholar]
- Jones, C.; Hesterly, W.S.; Borgatti, S.P. A general theory of network governance: Exchange conditions and social mechanisms. Acad. Manag. Rev. 1997, 22, 911–945. [Google Scholar] [CrossRef] [Green Version]
- Healy, P.; Hunt, G.; Kilroy, S.; Lynn, T.; Morrison, J.P.; Venkatagiri, S. Evaluation of peak detection algorithms for social media event detection. In Proceedings of the 2015 10th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Trento, Italy, 5–6 November 2015. [Google Scholar]
- Du, P.; Kibbe, W.A.; Lin, S.M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 2006, 22, 2059–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palshikar, G. Simple algorithms for peak detection in time-series. In Proceedings of the 1st International Conference Advanced Data Analysis, Business Analytics and Intelligence 2009, Ahmedabad, India, 6–7 June 2009; pp. 1–13. [Google Scholar]
- Lehmann, J.; Gonçalves, B.; Ramasco, J.J.; Cattuto, C. Dynamical classes of collective attention in twitter. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16-20 April 2012; pp. 251–260. [Google Scholar]
- Edwards, C.; Spence, P.R.; Gentile, C.J.; Edwards, A.; Edwards, A. How much Klout do you have… A test of system generated cues on source credibility. Comput. Hum. Behav. 2013, 29, A12–A16. [Google Scholar] [CrossRef]
- Eschenbrenner, B.; Nah, F.F.-H.; Telaprolu, V.R. Efficacy of social media utilization by public accounting firms: Findings and directions for future research. J. Inf. Syst. 2015, 29, 5–21. [Google Scholar] [CrossRef]
- Lynn, T.; Rosati, P.; Quinn, M.; Murphy, B. #Brexit: The Role of Accounting Firms in the Brexit Discourse on Twitter. In Proceedings of the 11th ENROAC Conference, Naples, Italy, 29–30 June 2017. [Google Scholar]
- Chae, B.K. Insights from hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. Int. J. Prod. Econ. 2015, 165, 247–259. [Google Scholar]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Monge, P. Who connects with whom? A social network analysis of an online open source software community. First Monday 2011, 16. [Google Scholar] [CrossRef]
- Wang, R.; Chu, K.H. Networked publics and the organizing of collective action on Twitter: Examining the #Freebasel campaign. Convergence 2017, 25, 393–408. [Google Scholar]
User Screen Name | Number of Retweets Received (A) | Number of Replies Received (B) | Visibility (A + B) | Activity (Tweets + Retweets + Replies) |
---|---|---|---|---|
BBCBreaking | 54,573 | 1172 | 55,745 | 43 |
business | 43,815 | 675 | 44,490 | 1378 |
Snowden | 42,611 | 117 | 42,728 | 1 |
joffley | 40,437 | 6 | 40,443 | 1 |
nicoleperlroth | 28,555 | 48 | 28,603 | 4 |
PrisonPlanet | 24,981 | 950 | 25,931 | 174 |
CNN | 24,714 | 648 | 25,362 | 92 |
LeaveEUOfficial | 18,994 | 1426 | 20,420 | 816 |
Nigel_Farage | 13,599 | 4564 | 18,163 | 52 |
BBCNews | 15,636 | 2190 | 17,826 | 251 |
DartmouthDerek | 16,738 | 2 | 16,740 | 10 |
TheEconomist | 15,636 | 807 | 16,443 | 220 |
benphillips76 | 16,359 | 12 | 16,371 | 10 |
MoDeutschmann | 16,051 | 5 | 16,056 | 4 |
scottbix | 15,669 | 14 | 15,683 | 4 |
McIlroyRory | 15,488 | 35 | 15,523 | 1 |
LouiseMensch | 13,900 | 1173 | 15,073 | 2600 |
theordinaryman2 | 13,935 | 307 | 14,242 | 3080 |
feminizza | 13,848 | 6 | 13,854 | 5 |
Dwalingen | 13,384 | 125 | 13,509 | 4903 |
billmaher | 13,384 | 77 | 13,461 | 1 |
wmyeoh | 12,933 | 15 | 12,948 | 6 |
sturdyAlex | 12,470 | 127 | 12,597 | 192 |
RT_com | 11,849 | 341 | 12,190 | 351 |
Pdacosta | 11,831 | 87 | 11,918 | 628 |
User Screenname | Original Tweets (A) | Retweets (B) | Replies (C) | Activity (A + B + C) | Number of Retweets Received (D) | Number of Replies Received (E) | Visibility (D + E) |
---|---|---|---|---|---|---|---|
brexitmarch | 37,215 | 0 | 0 | 37,215 | 371 | 6 | 377 |
iVoteLeave | 0 | 34,296 | 0 | 34,296 | 0 | 74 | 74 |
Col_Connaughton | 31,805 | 0 | 2 | 31,805 | 2182 | 33 | 2215 |
iVoteStay | 0 | 21,560 | 0 | 21,560 | 0 | 70 | 70 |
Fight4UK | 4087 | 5544 | 49 | 9631 | 5985 | 210 | 6195 |
RoyalNavyNews | 7078 | 1835 | 4593 | 8913 | 595 | 27 | 622 |
MikkiL | 486 | 8126 | 360 | 8612 | 897 | 206 | 1103 |
UKIPNFKN | 6447 | 783 | 632 | 7230 | 3498 | 211 | 3709 |
SaraPadmore | 1 | 6510 | 0 | 6511 | 0 | 2 | 2 |
marie52d | 37 | 6210 | 25 | 6247 | 9 | 5 | 14 |
KimKligonian | 6158 | 0 | 0 | 6158 | 222 | 2 | 224 |
JodieActy | 939 | 5102 | 118 | 6041 | 852 | 25 | 877 |
BrexitLive | 5833 | 11 | 5 | 5844 | 327 | 12 | 339 |
EUVoteLeave23rd | 2770 | 2265 | 241 | 5035 | 5609 | 215 | 5824 |
mwengway | 1652 | 3316 | 1624 | 4968 | 224 | 12 | 236 |
Dwalingen | 2806 | 2097 | 240 | 4903 | 13,384 | 125 | 13,509 |
BUZZ_Just_In | 4741 | 12 | 0 | 4753 | 14 | 1 | 15 |
2053pam | 506 | 3955 | 352 | 4461 | 476 | 29 | 505 |
richyh5712 | 666 | 3784 | 10 | 4450 | 668 | 27 | 695 |
Jeansmart45Jean | 86 | 4194 | 3 | 4280 | 49 | 7 | 56 |
IsThisAB0t | 0 | 4239 | 0 | 4239 | 0 | 1 | 1 |
tallison54 | 421 | 3740 | 282 | 4161 | 289 | 18 | 307 |
KeithBe1 | 27 | 4120 | 10 | 4147 | 83 | 15 | 98 |
MarkInNorthWest | 2717 | 1411 | 438 | 4128 | 568 | 35 | 603 |
belindawood99 | 528 | 3505 | 54 | 4033 | 313 | 17 | 330 |
Network Attribute | Communities | ||||
---|---|---|---|---|---|
SC1 | SC2 | SC3 | SC4 | SC5 | |
Number of Nodes | 31,631 | 13,440 | 10,612 | 10,028 | 9674 |
Number of Edges | 109,782 | 16,048 | 12,531 | 11,960 | 11,530 |
Average Degree | 3.471 | 1.194 | 1.181 | 1.193 | 1.192 |
Network Density | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Network Diameter | 15 | 9 | 7 | 11 | 19 |
Average Path Length | 5.206 | 1.41 | 1.63 | 2.695 | 7.111 |
Average Clustering Co-efficient | 0.012 | 0.003 | 0.004 | 0.005 | 0.006 |
% of #Brexit Network | 13% | 5% | 4% | 4% | 3.85% |
User Screen Name | PageRank | In-Degree | Out-Degree | Degree |
---|---|---|---|---|
StrongerIn | 0.00594 | 1362 | 0 | 1362 |
vote_leave | 0.00576 | 1127 | 0 | 1127 |
LouiseMensch | 0.00508 | 745 | 53 | 798 |
Nigel_Farage | 0.00502 | 4564 | 0 | 4564 |
BorisJohnson | 0.00499 | 2697 | 0 | 2697 |
David_Cameron | 0.00491 | 4858 | 0 | 4858 |
DanHannanMEP | 0.00440 | 909 | 0 | 909 |
LeaveEUOfficial | 0.00425 | 1062 | 5 | 1067 |
DavidJo52951945 | 0.00364 | 965 | 0 | 965 |
realDonaldTrump | 0.00356 | 2402 | 0 | 2402 |
bbclaurak | 0.00342 | 433 | 0 | 433 |
JuliaHB1 | 0.00318 | 616 | 1 | 617 |
afneil | 0.00302 | 589 | 0 | 589 |
pmalinski83 | 0.00274 | 8 | 0 | 8 |
montie | 0.00208 | 523 | 5 | 528 |
SkyNews | 0.00204 | 2746 | 1 | 2747 |
nsoamesmp | 0.00171 | 155 | 0 | 155 |
BBCNews | 0.00166 | 2190 | 0 | 2190 |
ajcdeane | 0.00151 | 264 | 4 | 268 |
Anna_Soubry | 0.00149 | 168 | 1 | 169 |
NicolaSturgeon | 0.00148 | 1005 | 0 | 1005 |
LiamFoxMP | 0.00145 | 135 | 0 | 135 |
RedHotSquirrel | 0.00141 | 565 | 2 | 567 |
DVATW | 0.00140 | 398 | 3 | 401 |
KateHoeyMP | 0.00132 | 275 | 3 | 278 |
User Screen Name | BC | User Screen Name | BC | User Screen Name | BC |
---|---|---|---|---|---|
scotpolitik | 160,991,789.23 | JonnySongs | 19,495,086.55 | meNabster | 14,582,841.43 |
RoyalNavyNews | 81,722,474.83 | Bonn1eGreer | 19,474,988.91 | LeeJasper | 14,455,405.44 |
qprmicky | 77,156,173.64 | TheBRexit | 19,459,144.45 | PoliticalNigel | 14,092,739.48 |
Andy_T_ | 37,890,044.68 | teachertwit2 | 18,067,382.05 | ivanwhite48 | 13,999,900.36 |
TheTamikonelf | 33,594,424.20 | paradimeshift | 17,493,783.00 | RT_com | 13,285,581.75 |
thunderf00t | 24,075,568.61 | maxkeiser | 17,318,949.70 | ||
RoyalMegaTravel | 21,179,474.30 | lisa_alba | 16,726,826.50 | ||
JohnSydenham | 20,197,955.15 | jonworth | 15,823,695.47 | ||
foolonthehillz | 19,950,977.00 | PrettyHatMech | 15,454,931.88 | ||
lilyallen | 19,593,113.05 | georgegalloway | 14,731,274.57 |
SC1 | SC2 | SC3 | SC4 | SC5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
User Screen Name | Page Rank | User Screen Name | Page Rank | User Screen Name | Page Rank | User Screen Name | Page Rank | User Screen Name | Page Rank | |
Influencers | StrongerIn | 0.00594 | realDonaldTrump | 0.06052 | David_Cameron | 0.08937 | business | 0.01186 | NicolaSturgeon | 0.02275 |
vote_leave | 0.00576 | CNN | 0.01243 | jeremycorbyn | 0.01397 | Reuters | 0.00880 | eddieizzard | 0.00556 | |
LouiseMensch | 0.00508 | HillaryClinton | 0.01099 | Number10gov | 0.01396 | FT | 0.00852 | georgegalloway | 0.00527 | |
DanHannanMEP | 0.00440 | FoxNews | 0.00806 | George_Osborne | 0.0128 | WSJ | 0.00628 | theSNP | 0.00346 | |
LeaveEUOfficial | 0.00425 | POTUS | 0.00770 | Lord_Sugar | 0.01242 | washingtonpost | 0.00578 | BBC_HaveYourSay | 0.00300 | |
DavidJo52951945 | 0.00364 | BBC | 0.00482 | MayorofLondon | 0.01162 | zerohedge | 0.00523 | RuthDavidsonMSP | 0.00272 | |
bbclaurak | 0.00342 | thehill | 0.00396 | UKLabour | 0.01024 | ianbremmer | 0.00407 | carlbildt | 0.00252 | |
JuliaHB1 | 0.00318 | SadiqKhan | 0.00388 | bbcquestiontime | 0.00885 | AJStream | 0.00378 | davidschneider | 0.00247 | |
afneil | 0.00302 | cnni | 0.00344 | BarackObama | 0.0083 | CNBC | 0.00365 | Bonn1eGreer | 0.00241 | |
pmalinski83 | 0.00274 | IngrahamAngle | 0.00320 | theresa_may | 0.00546 | jimcramer | 0.00328 | British_Airways | 0.00236 | |
Hubs | Screen-name | BC | Screen-name | BC | Screen-name | BC | Screen-name | BC | Screen-name | BC |
LouiseMensch | 12,287,456.18 | Chriscarroll50 | 834 | MarkInNorthWest | 2,422.33 | RudyHavenstein | 5986.5 | teachertwit2 | 876,468.56 | |
lasancmt | 11,263,094.78 | ElianaBenador | 427 | ComedyDignitas | 1,053.00 | JediEconomist | 4633 | scotpolitik | 709,779.13 | |
JAFF3 | 9,070,600.67 | SpecialKMB1969 | 352 | AntiAssessment | 642 | HamishP95 | 3161 | ivanwhite48 | 475,672.82 | |
sandieshoes | 8,420,343.85 | roxyloveslucy | 328 | Citizensmif21 | 576 | BTabrum | 2767 | DiligentTruth | 474,183.49 | |
UKIPNFKN | 7,758,927.04 | AlwayanAmerican | 291 | lucid_dementia | 488.33 | TimBendover | 2710 | PrettyHatMech | 402,834.67 | |
BeverleyTruth | 6,929,259.67 | Writeonright | 223 | HortopJames | 410.33 | GTCost | 1833 | RogueCoder250 | 399,291.55 | |
BrexitNoww | 6,647,642.16 | AMTrump4PRES | 143 | VictoriaLIVE | 252 | FedPorn | 1275 | bcomininvisible | 381,116.42 | |
SimonGosden | 5,864,353.54 | dawngpsalm63 | 138.5 | ScottJonesy | 181 | Nzallblack | 1218 | georgegalloway | 377,326.22 | |
Brexpats | 5,249,210.79 | noblebarnes87 | 137 | narrowwaychurch | 177 | jrhopkin | 1211 | PoliticalNigel | 374,852.55 | |
stardust193 | 5,229,101.85 | PDN_Spring | 114 | dougalSW19 | 169 | isave2invest | 1201 | moodvik1 | 371,055.47 |
Co-occurring Words | Frequency | Co-occurring Words | Frequency | Co-occurring Words | Frequency |
---|---|---|---|---|---|
brexit vote leave | 112,372 | euref leave eu | 29,730 | brexit leave | 18,137 |
post brexit | 51,031 | david cameron | 28,028 | leaving eu | 15,587 |
leave eu | 44,457 | brexit impact | 23,670 | brexit result | 15,400 |
vote brexit | 41,806 | referendum vote leave | 23,157 | brexit mean | 15,186 |
brexit remain | 38,310 | brexit referendum vote leave | 22,832 | brexit campaign | 15,105 |
leave eu vote leave | 34,188 | brexit leave eu | 21,541 | ||
strongerin no2eu | 33,232 | strongerin no2eu euref leaveeu vote leave | 20,069 | ||
leave brexit | 31,088 | brexit euro2016 | 19,958 | ||
no2eu euref | 30,826 | boris johnson | 19,400 | ||
vote leave | 29,804 | voted brexit | 19,077 |
Hashtag | Frequency | Hashtag | Frequency | Hashtag | Frequency |
---|---|---|---|---|---|
#brexit | 1,982,983 | #referendum | 47,422 | #europe | 22,073 |
#euref | 285,575 | #euro2016 | 40,352 | #ivoted | 17,037 |
#voteleave | 216,243 | #eurefresults | 39,691 | #brexitvote | 16,863 |
#eu | 199,658 | #no2eu | 37,707 | #cameron | 16,741 |
#uk | 95,065 | #ukip | 27,760 | #votein | 14,748 |
#remain | 90,539 | #britain | 24,979 | ||
#strongerin | 88,161 | #trump | 23,782 | ||
#leaveeu | 84,958 | #voteremain | 23,613 | ||
#eureferendum | 75,195 | #bremain | 22,241 | ||
#leave | 58,920 | #nhs | 22,118 |
Timestamp | Reference Hour | Number of Tweets | Topic/Event |
---|---|---|---|
24 June 2016 0500 | 3005 | 70,074 | Brexit became a reality |
27 June 2016 2000 | 3093 | 32,895 | England lost to Iceland in round of 16 and hence, were eliminated from Euro2016 |
30 June 2016 1100 | 3156 | 7398 | Boris Johnson rules himself out of Tory leadership race |
4 July 2016 0900 | 3250 | 5505 | UKIP leader Nigel Farage resigns |
Industry | Tweets | No. of Users | |||
---|---|---|---|---|---|
N. | Avg. | Min. | Max | ||
Automotive Manufacturing | 2 | 2 | 2 | 2 | 1 |
Non-food Consumer Goods Manufacturing | 3 | 1 | 1 | 1 | 3 |
Business Services | 91 | 1.71 | 1 | 55 | 8 |
Banking and Other Financial Services | 59 | 5.36 | 1 | 32 | 11 |
IT and Telecommunications | 43 | 4.3 | 1 | 29 | 10 |
Leisure Services | 24 | 1.71 | 1 | 19 | 14 |
Insurance | 17 | 8.5 | 3 | 14 | 2 |
Total | 239 | 4.88 | 1 | 55 | 49 |
Business Objectives | Tweets | No. of Users | |||
---|---|---|---|---|---|
N. | Avg. | Min. | Max | ||
Recruitment and Selection | 0 | 0 | 0 | 0 | 0 |
Socialization and Onboarding | 0 | 0 | 0 | 0 | 0 |
Training and Development | 0 | 0 | 0 | 0 | 0 |
Knowledge Sharing | 173 | 5.97 | 1 | 40 | 29 |
Branding and Marketing | 47 | 2.61 | 1 | 15 | 18 |
Creativity and Problem Solving | 6 | 1.5 | 1 | 2 | 4 |
Influencing Organizational Culture/Change | 3 | 1 | 1 | 1 | 3 |
Influencing Societal or Political Change | 2 | 1 | 1 | 1 | 2 |
Automated | 0 | 0 | 0 | 0 | 0 |
Other | 8 | 1 | 1 | 1 | 8 |
Total | 239 | 3.73 | 1 | 40 | 49 |
Activities | Tweets | No. of Users | |||
---|---|---|---|---|---|
N. | Avg. | Min. | Max | ||
Corporate Social Responsibility | 1 | 1 | 1 | 1 | 1 |
Corporate Political Activity | 1 | 1 | 1 | 1 | 1 |
Socio-Political Involvement | 1 | 1 | 1 | 1 | 1 |
Other Socio-Political Engagement (of which): | 212 | 3.15 | 1 | 44 | 44 |
(a) Socio-political Curation with Opinion | 26 | 2.36 | 1 | 11 | 11 |
(b) Other Socio-Political Discourse without Opinion | 18 | 2.57 | 1 | 8 | 7 |
(c) Other Socio-Political Discourse with Opinion | 1 | 1 | 1 | 1 | 1 |
(d) Non-partisan First Party Expertise | 167 | 6.68 | 1 | 44 | 25 |
Other | 24 | 1.5 | 1 | 8 | 16 |
Automated | 0 | 0 | 0 | 0 | 0 |
Total | 239 | 3.79 | 1 | 44 | 49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynn, T.; Rosati, P.; Nair, B. Calculated vs. Ad Hoc Publics in the #Brexit Discourse on Twitter and the Role of Business Actors. Information 2020, 11, 435. https://doi.org/10.3390/info11090435
Lynn T, Rosati P, Nair B. Calculated vs. Ad Hoc Publics in the #Brexit Discourse on Twitter and the Role of Business Actors. Information. 2020; 11(9):435. https://doi.org/10.3390/info11090435
Chicago/Turabian StyleLynn, Theo, Pierangelo Rosati, and Binesh Nair. 2020. "Calculated vs. Ad Hoc Publics in the #Brexit Discourse on Twitter and the Role of Business Actors" Information 11, no. 9: 435. https://doi.org/10.3390/info11090435
APA StyleLynn, T., Rosati, P., & Nair, B. (2020). Calculated vs. Ad Hoc Publics in the #Brexit Discourse on Twitter and the Role of Business Actors. Information, 11(9), 435. https://doi.org/10.3390/info11090435