Active Disturbance Rejection Control for DC Motor Laboratory Plant Learning Object †
Abstract
:1. Introduction
1.1. Model-Based versus Model-Free Approaches
1.2. History Started Long Time Ago
1.3. Problem Statement and Contribution of the Paper
- to present the reconstruction and compensation of the disturbances provided by this method as the simplest case of a more general approach to the reconstruction of an extended state vector including equivalent disturbance, which is then compensated for by an opposite signal, the state controller design and the delay compensation,
- to discuss several approaches in approximating nonlinear systems by linear models of different complexity,
- to explain relations between ADRC and MCT.
2. Compensation of Input Disturbances
2.1. Controller Derivation
2.2. Reconstruction of an Input Disturbances by ESO
2.3. Observer Tuning
3. Real Experiments
3.1. Step Response-Based Plant Approximation
3.2. Qualitative and Quantitative Evaluation
4. Analysis of the Results
4.1. Impact of the Tuning Parameter
4.2. More Complex Controllers
- application of an additional time constant, or several shorter time constants [15] (see Remark 1), or
- application of a dead time.
5. Alternative Disturbance Observer Design
5.1. ESO Expressed by Transfer Functions
5.2. ESO as a special case of Disturbance Observer (DOB)
6. Discussion
7. Experimentation and Learning Aspects
- (a)
- measuring static input-output characteristic,
- (b)
- choosing working point in linear part of the static input to output characteristics,
- (c)
- measuring step response at the chosen working point,
- (d)
- calculating static first-order model parameters using measured step-response,
- (e)
- calculating integrating model parameters using measured step-response.
- implementing controllers,
- performing hands on real-time experiments using various combinations of closed-loop poles and disturbance observer gains,
- evaluating control quality using integral criteria, taking account the deviations from ideal shapes quantified by modified total variance criteria (see, e.g., [21]).
- manage, archive and save, process, visualize and present data that result from the extensive experiments,
- balance the individual development of required programs with pre-programmed tools,
- develop programming skills by the help of a control course,
- define certain program and data structures, etc.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ackermann, J. Abtastregelung; Springer: Berlin, Germany, 1972. [Google Scholar]
- Luenberger, D. Observers for multivariable systems. IEEE Trans. Autom. Control 1966, 11, 190–197. [Google Scholar] [CrossRef]
- Han, J. From PID to Active Disturbance Rejection Control. Ind. Electron. IEEE Trans. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Gao, Z. Active disturbance rejection control: A paradigm shift in feedback control system design. In Proceedings of the American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; pp. 2399–2405. [Google Scholar]
- Gao, Z. On the centrality of disturbance rejection in automatic control. ISA Trans. 2014, 53, 850–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, H.D.; Ma, N.; Ma, J.; Zhu, X.Y. Robust intelligent control design for marine diesel engine. J. Shanghai Jiaotong Univ. (Science) 2013, 18, 660–666. [Google Scholar] [CrossRef]
- Pan, W.; Xiao, H.; Han, Y.; Wang, C.; Yang, G. Nonlinear active disturbance rejection controller research of main engine for ship. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 4978–4981. [Google Scholar]
- Kang, E.; Hong, S.; Sunwoo, M. Idle speed controller based on active disturbance rejection control in diesel engines. Int. J. Automot. Technol. 2016, 17, 937–945. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, J.; Zhang, J.; Li, W.; Liu, Y.; Fu, W.; Ma, X. Speed Control for a Marine Diesel Engine Based on the Combined Linear-Nonlinear Active Disturbance Rejection Control. Math. Probl. Eng. 2018, 2018, 7641862. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Shen, J.; Hua, Q.; Lee, K.Y. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell. Appl. Energy 2018, 231, 866–875. [Google Scholar] [CrossRef]
- Sun, L.; Jin, Y.; You, F. Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell. Appl. Energy 2020, 261, 114381. [Google Scholar] [CrossRef]
- Parvathy, R.; Daniel, A.E. A survey on active disturbance rejection control. In Proceedings of the 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), Kottayam, India, 22–23 March 2013; pp. 330–335. [Google Scholar]
- Albertos, P.; Sanz, R.; Garcia, P. Disturbance rejection: A central issue in process control. In Proceedings of the 2015 4th International Conference on Systems and Control (ICSC), Sousse, Tunisia, 28–30 April 2015; pp. 1–8. [Google Scholar]
- Zeng, G.Q.; Chen, J.; Chen, M.R.; Dai, Y.X.; Li, L.M.; Lu, K.D.; Zheng, C.W. Design of multivariable PID controllers using real coded population based extremal optimization. Neurocomputing 2015, 151, 1443–1453. [Google Scholar] [CrossRef]
- Huba, M.; Oliveira, P.; Vrančič, D.; Bisták, P. ADRC as an Exercise for Modeling and Control Design in the State-Space. In Proceedings of the 6th-2019 International Conference on Control, Decision and Information Technologies, Paris, France, 23–26 April 2019. [Google Scholar]
- Fliess, M.; Join, C. Model-free control. Int. J. Control 2013, 86, 2228–2252. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942, 64, 759–768. [Google Scholar] [CrossRef]
- Feldbaum, A. Optimal Control Systems; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Huba, M.; Hypiusová, M.; Tapák, P. Learning Objects and Experiments for Active Disturbance Rejection Control. In Proceedings of the 2019 5th Experiment International Conference (exp.at’19), Funchal, Madeira Island, Portugal, 12–14 June 2019; pp. 161–166. [Google Scholar]
- Shinskey, F. How good are Our Controllers in Absolute Performance and Robustness. Meas. Control 1990, 23, 114–121. [Google Scholar] [CrossRef]
- Huba, M. Performance measures, performance limits and optimal PI control for the IPDT plant. J. Process Control 2013, 23, 500–515. [Google Scholar] [CrossRef]
- Huba, M.; Kul’ha, P. Saturating Control for the Dominant First Order Plants. In Proceedings of the IFAC Workshop “Motion Control”, Munich, Germany, 9–11 October 1995; pp. 197–204. [Google Scholar]
- Ohishi, K. A new servo method in mechantronics. Trans. Jpn. Soc. Elect. Eng. 1987, 107-D, 83–86. [Google Scholar]
- Ohishi, K.; Nakao, M.; Ohnishi, K.; Miyachi, K. Microprocessor-Controlled DC Motor for Load-Insensitive Position Servo System. IEEE Trans. Ind. Electron. 1987, IE-34, 44–49. [Google Scholar] [CrossRef]
- Huba, M.; Bélai, I. Noise attenuation motivated controller design. Part I: Speed control. In Proceedings of the Speedam Symposium, Ischia, Italy, 18–20 June 2014; pp. 1325–1330. [Google Scholar]
- Huba, M.; Sovišová, D.; Spurná, N. Digital Time-Optimal Control of Nonlinear Second-Order System. Prepr. 10th IFAC World Congr. 1987, 8, 29–34. [Google Scholar] [CrossRef]
- Huba, M.; Vrančič, D. Comparing filtered PI, PID and PIDD2 control for the FOTD plants. In Proceedings of the 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control, Ghent, Belgium, 9–11 May 2018. [Google Scholar]
- Huba, M.; Bélai, I. Limits of a Simplified Controller Design Based on IPDT models. ProcIMechE Part I J. Syst. Control Eng. 2018, 232, 728–741. [Google Scholar]
- Ťapák, P. Real experiments marking in automatic control education. In Proceedings of the 2011 14th International Conference on Interactive Collaborative Learning, Piestany, Slovakia, 21–23 September 2011; pp. 281–284. [Google Scholar]
SM | −2.5 | −1 | 533.73 | 5.894491825 | 9428 |
IM | −2.5 | −1 | 1833.07 | 6.043284497 | 9330 |
SM | −2.5 | −2.5 | 562.56 | 6.432918939 | 9832 |
IM | −2.5 | −2.5 | 1096.26 | 6.371039265 | 9840 |
SM | −2.5 | −5 | 536.6 | 6.168313879 | 8808 |
IM | −2.5 | −5 | 817.45 | 6.402538277 | 9968 |
SM | −4 | −1 | 353.29 | 11.10806451 | 8852 |
IM | −4 | −1 | 1284.97 | 9.749876336 | 9690 |
SM | −4 | −4 | 581.09 | 13.99768388 | 10342 |
IM | −4 | −4 | 635.88 | 9.301805688 | 9248 |
SM | −4 | −5 | 481.41 | 9.220900011 | 6424 |
IM | −4 | −5 | 565.48 | 5.201099543 | 4656 |
SM | −5 | −3 | 405.22 | 11.52032935 | 6684 |
IM | −5 | −3 | 576.62 | 6.499809124 | 4900 |
SM | −5 | −5 | 564.62 | 19.41022646 | 10788 |
IM | −5 | −5 | 483.33 | 12.97349199 | 10470 |
SM | −5 | −7 | 558.19 | 27.23828 | 14294 |
IM | −5 | −7 | 439.34 | 12.70464701 | 10124 |
SM | −1.5 | −1.5 | 813.45 | 2.19723531 | 10444 |
IM | −1.5 | −1.5 | 2331.15 | 3.8604877 | 9710 |
SM | −0.9 | −1 | 1367.53 | 0.656394532 | 9516 |
IM | −0.9 | −1 | 5150.8 | 1.888246085 | 8310 |
SM | −2.5 | −1 | 1069 | 6.084217084 | 10264 |
IM | −2.5 | −1 | 1684.36 | 6.001085686 | 10638 |
SM | −2.5 | −2.5 | 528.65 | 6.046843664 | 10086 |
IM | −2.5 | −2.5 | 765.64 | 6.30994367 | 10390 |
SM | −2.5 | −5 | 308.09 | 5.555957642 | 9238 |
IM | −2.5 | −5 | 482.41 | 6.428117495 | 11284 |
SM | −4 | −1 | 661.9 | 10.74076305 | 8286 |
IM | −4 | −1 | 1105.84 | 9.660718058 | 10492 |
SM | −4 | −4 | 331.16 | 12.84074021 | 9874 |
IM | −4 | −4 | 421.18 | 9.542247448 | 9682 |
SM | −4 | −5 | 281.49 | 7.017225253 | 5284 |
IM | −4 | −5 | 357.57 | 5.178514655 | 4922 |
SM | −5 | −3 | 281.01 | 10.68852441 | 6496 |
IM | −5 | −3 | 408.24 | 6.238420898 | 4870 |
SM | −5 | −5 | 310.79 | 17.52628653 | 10348 |
IM | −5 | −5 | 302.5 | 12.46486024 | 10322 |
SM | −5 | −7 | 340.16 | 22.66275 | 12826 |
IM | −5 | −7 | 253.18 | 10.90469989 | 8944 |
SM | −1.5 | −1.5 | 1172.04 | 1.969434562 | 9856 |
IM | −1.5 | −1.5 | 1940.44 | 3.283381832 | 10056 |
SM | −0.9 | −1 | 2848.39 | 0.530924662 | 8474 |
IM | −0.9 | −1 | 4608.22 | 1.920761782 | 10130 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huba, M.; Hypiusová, M.; Ťapák, P.; Vrancic, D. Active Disturbance Rejection Control for DC Motor Laboratory Plant Learning Object. Information 2020, 11, 151. https://doi.org/10.3390/info11030151
Huba M, Hypiusová M, Ťapák P, Vrancic D. Active Disturbance Rejection Control for DC Motor Laboratory Plant Learning Object. Information. 2020; 11(3):151. https://doi.org/10.3390/info11030151
Chicago/Turabian StyleHuba, Mikuláš, Mária Hypiusová, Peter Ťapák, and Damir Vrancic. 2020. "Active Disturbance Rejection Control for DC Motor Laboratory Plant Learning Object" Information 11, no. 3: 151. https://doi.org/10.3390/info11030151
APA StyleHuba, M., Hypiusová, M., Ťapák, P., & Vrancic, D. (2020). Active Disturbance Rejection Control for DC Motor Laboratory Plant Learning Object. Information, 11(3), 151. https://doi.org/10.3390/info11030151