Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion
Abstract
1. Introduction
2. Materials and Methods
2.1. Continuous Conditional Random Fields (CCRF)
2.2. Extreme Learning Machine (ELM)
3. Materials and Methods
3.1. Standard CCRF
3.2. DM-CCRF
3.3. Learning and Inference in DM-CCRF
4. Results and Discussion
4.1. Experimental Setup
4.1.1. Dataset
4.1.2. Baseline Regressor
4.2. Results and Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Board, T.R. Expanding Metropolitan Highways: Implication for Air Quality and Energy Use—Special Report 245; The National Academic Press: Washington, DC, USA, 1995. [Google Scholar]
- Chen, Y.; Guizani, M.; Zhang, Y.; Wang, L.; Crespi, N.; Lee, G.M.; Wu, T. When traffic flow prediction meets wireless big data analytics. IEEE Netw. 2019, 33, 161–167. [Google Scholar] [CrossRef]
- Lighthill, M.J.; Whitham, G.B. On kinematic waves II: A theory of traffic flow on long crowded roads. Proc. R. Soc. A Math. Phys. Eng. Sci. 1955, 229, 317–345. [Google Scholar]
- Gazis, D.C. Traffic Theory; Kluwer Academic Publishers: Norwell, MA, USA, 2002. [Google Scholar]
- Emami, A.; Sarvi, M.; Bagloee, S.A. Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment. J. Mod. Transp. 2019, 27, 222–232. [Google Scholar] [CrossRef]
- Salamanis, A.; Margaritis, G.; Kehagias, D.D.; Matzoulas, G.; Tzovaras, D. Identifying patterns under bot normal and abnormal traffic conditions for short-term traffic prediction. Transp. Res. Procedia 2017, 22, 665–674. [Google Scholar] [CrossRef]
- Duan, P.; Mao, G.; Yue, W.; Wang, S. A unified STARIMA based model for short-term traffic flow prediction. In Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Wang, C.; Ran, B.; Zhang, J.; Qu, X.; Yang, H. A novel approach to estimate freeway traffic state: Parallel computing and improved Kalman filter. IEEE Intell. Transp. Syst. Mag. 2018, 10, 180–193. [Google Scholar] [CrossRef]
- Wei, C.; Asakura, Y. A Bayesian approach to traffic estimation in stochastic user equilibrium networks. In 20th International Symposium on Transportation and Traffic Theory; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zhu, Z.; Zhu, S.; Zheng, Z.; Yang, H. A generalized Bayesian traffic model. Transp. Res. Part C 2019, 108, 182–206. [Google Scholar] [CrossRef]
- Marzano, V.; Papola, A.; Simonelli, F.; Papageorgiou, M. A Kalman filter for Quasi-Dynamic o-d flow estimation/updating. IEEE Trans. Intell. Transp. Syst. 2019, 19, 3604–3612. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, Z.; Yang, J.; Yu, Y.; Zhou, T.; Qin, J. A noise-immune Kalman filter for short-term traffic flow forecasting. Phys. A 2019, 536, 122601. [Google Scholar] [CrossRef]
- Duan, P.; Mao, G.; Zhang, C.; Kang, J. A trade-off between accuracy and complexity: Short-term traffic flow prediction with spational-temporal correlations. In Proceedings of the 21th International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Alghamdi, T.; Elgazzar, K.; Bayoumi, M.; Sharaf, T.; Shah, S. Forecasting traffic congestion using ARIMA modeling. In Proceedings of the 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Chu, K.C.; Saigal, R.; Saitou, K. Real-time traffic prediction and probing strategy for Lagrangian traffic data. IEEE Trans. Intell. Transp. Syst. 2019, 20, 497–506. [Google Scholar] [CrossRef]
- Tu, Q.; Cheng, L.; Li, D.; Ma, J.; Sun, C. Stochastic transportation network considering ATIS with the information of environmental cost. Sustainability 2018, 10, 3861. [Google Scholar] [CrossRef]
- Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A review of machine learning and IoT in smart transportation. Future Internet 2019, 11, 94. [Google Scholar] [CrossRef]
- Fouladgar, M.; Parchami, M.; Elmasri, R.; Ghaderi, A. Scalable deep traffic flow neural networks for urban traffic congestion prediction. In Proceedings of the International Joint Conference on Neural Network (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2251–2258. [Google Scholar]
- Chen, Y.; Chen, F.; Ren, Y.; Wu, T.; Yao, Y. DeepTFP: Mobile Time Series Data Analytics Based Traffic Flow Prediction; MobiCom: Ulaanbaatar, Mongolia, 2017; pp. 537–539. [Google Scholar]
- Tian, Y.; Zhang, K.; Li, J.; Lin, X.; Yang, B. LSTM-based traffic flow prediction with missing data. Neurocomputing 2018, 318, 297–305. [Google Scholar] [CrossRef]
- Yang, B.; Sun, S.; Li, J.; Lin, X.; Tian, Y. Traffic flow prediction using LSTM with feature enhancement. Neurocomputing 2019, 332, 320–327. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, G.; Sun, L.; Wang, X.; Xu, X. A hybrid temporal association rules mining method for traffic congestion prediction. Comput. Ind. Eng. 2019, 130, 779–787. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Neural network architecture based on gradient boosting for IoT traffic prediction. Future Gener. Comput. Syst. 2019, 100, 656–673. [Google Scholar] [CrossRef]
- Lin, L.; Handley, J.C.; Gu, Y.; Zhu, L.; Wen, X.; Sadek, A.W. Quantifying uncertainty in short-term traffic prediction and its application to optimal staffing plan development. Transp. Res. Part C 2018, 92, 323–348. [Google Scholar] [CrossRef]
- Hou, Q.; Leng, J.; Ma, G.; Liu, W.; Cheng, Y. An adaptive hybrid model for short-term urban traffic flow prediction. Phys. A 2019, 527, 121065. [Google Scholar] [CrossRef]
- Jia, R.; Jiang, P.; Liu, L.; Cui, L.; Shi, Y. Data driven congestion trends prediction of urban transportation. IEEE Int. Things J. 2018, 5, 581–591. [Google Scholar] [CrossRef]
- Li, C.; Anavatti, S.G.; Ray, T. Short-term traffic flow prediction using different techniques. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011. [Google Scholar]
- Chi, Z.; Shi, L. Short-term traffic flow forecasting using ARIMa-SVM algorithm and R. In Proceedings of the 5th International Conference on Information Science and Control Engineering, Zhengzhou, China, 20–22 July 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Li, K.L.; Zhai, C.J.; Xu, J.M. Short-term traffic flow prediction using a methodology based on ARIMA and RBF-ANN. In Proceedings of the Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; The MIT Press: Cambridge, MA, USA, 2010; p. 3. [Google Scholar]
- Xing, Y.M.; Ban, X.J.; Liu, R.Y. A short-term traffic flow prediction method based on Kernel Extreme Learning Machine. In Proceedings of the International Conference on Big Data and Smart Computing, Shanghai, China, 15–17 January 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Zu, W.; Xia, Y. Back propagation bidirectional extreme learning machine for traffic flow time series prediction. Neural Comput. Appl. 2019, 31, 7401–7417. [Google Scholar] [CrossRef]
- Ban, X.; Guo, C.; Li, G. Application of extreme learning machine on large scale traffic congestion prediction. In Proceedings of ELM-2015 Volume 1; Springer: Cham, Switzerland, 2015; pp. 293–305. [Google Scholar]
- Zhang, Q.; Jian, D.; Xu, R.; Dai, W.; Liu, Y. Integrating heterogeneous data sources for traffic flow prediction through extreme learning machine. In Proceedings of the IEEE International Conference on Big Data (BIGDATA), Boston, MA, USA, 11–14 December 2017. [Google Scholar]
- Xing, Y.; Ban, X.; Liu, X.; Shen, Q. Large-scale traffic congestion prediction based on the symmetric extreme learning machine cluster fast learning method. Symmetry 2019, 11, 730. [Google Scholar] [CrossRef]
- Yang, H.F.; Dillon, T.S.; Chang, E.; Chen, Y.P.P. Optimized configuration of exponential smoothing and extreme learning machine for traffic flo9w forecasting. IEEE Trans. Ind. Inform. 2019, 15, 23–34. [Google Scholar] [CrossRef]
- Feng, W.; Chen, H.; Zhang, Z. Short-term traffic flow prediction based on wavelet function and extreme learning machine. In Proceedings of the 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China, 25–27 May 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Radosavljevic, V.; Vucetic, S.; Obradovic, Z. Continuous conditional random fields for regression in remote sensing. In Proceedings of the European Conference on Artificial Intelligence (ECAI), Lisbon, Portugal, 16–20 August 2010; pp. 809–814. [Google Scholar]
- Baltrusaitis, T.; Banda, N.; Robinson, P. Dimensional affect recognition using continuous conditional random. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, Shanghai, China, 22–26 April 2013. [Google Scholar]
- Baltrusaitis, T. Automatic Facial Expression Analysis; University of Cambridge: Cambridge, UK, 2014. [Google Scholar]
- Baltrusaitis, T.; Robinson, P.; Morency, L. Continuous conditional neural fields for structured regressions. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 5–12 September 2014; pp. 1–16. [Google Scholar]
- Fu, K.; Gu, I.Y.H.; Yang, J. Saliency detection by fully learning a continuous conditional random filed. IEEE Trans. Multimed. 2017, 19, 1531–1544. [Google Scholar] [CrossRef]
- Xu, D.; Ricci, E.; Ouyang, W.; Wang, X.; Sebe, N. Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Banda, N.; He, L.; Engelbrecht, A. Bio-acoustic emotion recognition using continuous conditional recurrent fields. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017. [Google Scholar]
- Zhou, H.; Ouyang, W.; Cheng, J.; Wang, X.; Li, H. Deep continuous conditional random fields with asymmetric inter-object constraints for online multi-object tracking. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 1011–1022. [Google Scholar] [CrossRef]
- Imbrasaite, V.; Baltrusaitis, T.; Robinson, P. CCNF for continuous emotion tracking in music: Comparison with CCRF and relative feature representation. In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Chengdu, China, 14–18 July 2014; pp. 1–6. [Google Scholar]
- Qin, T.; Liu, T.; Zhang, X.; Wang, D.; Li, H. Global ranking using continuous conditional random fields. In Advances in Neural Information Processing Systems; Neural Information Processing Systems (NIPS): Vancouver, BC, Canada, 2009; pp. 1281–1288. [Google Scholar]
- Gewali, U.B.; Monteiro, S.T. A tutorial on modeling and inference in undirected graphical models for hyperspectral image analysis. Int. J. Remote Sens. 2018, 39, 1–40. [Google Scholar] [CrossRef]
- Ristovski, K.; Radosavljevic, V.; Vucetic, S.; Obradovic, Z. Continuous conditional random fields for efficient regression in large fully connected graphs. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Washington, DC, USA, 14–18 July 2013. [Google Scholar]
- UK Highways Agency. Highways Agency Network Journey Time and Traffic Flow Data. Retrieved June 12, 2014, from Data.go.uk. Available online: https://data.gov.uk/dataset/dc18f7d5-2669-490f-b2b5-77f27ec133ad/highways-agency-network-journey-time-and-traffic-flow-data (accessed on 2 December 2019).
- Wibisono, A.; Jatmiko, W.; Wisesa, H.A.; Hardjono, B.; Mursanto, P. Traffic big data prediction and visualization using Fast Incremental Model Trees-Drift Detection (FIMT-DD). Knowl. Based Syst. 2016, 93, 33–46. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [Google Scholar]
- Ding, S.; Xu, X.; Nie, R. Extreme learning machine and its applications. Neural Comput. Appl. 2013, 25, 549–556. [Google Scholar] [CrossRef]
Scenarios | Kernel Parameter | Coefficient of Regularization |
---|---|---|
1 | 1 | 1 |
2 | 1 | 5 |
3 | 1 | 10 |
4 | 1 | 50 |
5 | 1 | 100 |
6 | 1 | 500 |
7 | 1 | 1000 |
8 | 1 | 10,000 |
9 | 1 | 1,000,000 |
10 | 1,000,000 | 5 |
11 | 1,000,000 | 10 |
12 | 1,000,000 | 50 |
13 | 1,000,000 | 100 |
14 | 1,000,000 | 1000 |
15 | 1,000,000 | 10,000 |
Scenarios | Performance Evaluation (MAPE) | ||
---|---|---|---|
ELM (%) | CCRF (%) | DM-CCRF (%) | |
1 | 87.949 | 87.112 | 80.312 |
2 | 80.598 | 79.521 | 73.916 |
3 | 75.993 | 74.774 | 69.706 |
4 | 62.563 | 62.281 | 57.903 |
5 | 56.531 | 56.404 | 52.663 |
6 | 49.268 | 47.667 | 46.314 |
7 | 48.255 | 47.328 | 45.342 |
8 | 47.331 | 46.265 | 44.966 |
9 | 56.267 | 54.286 | 52.796 |
10 | 52.136 | 49.747 | 48.400 |
11 | 57.906 | 57.067 | 53.297 |
12 | 93.272 | 92.585 | 84.893 |
13 | 103.026 | 102.459 | 93.925 |
14 | 110.763 | 109.814 | 100.349 |
15 | 184.762 | 177.132 | 167.715 |
Average | 77.775 | 76.296 | 71.500 |
Head-to-Head | 0 | 0 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purbarani, S.C.; Sanabila, H.R.; Wibisono, A.; Alfiany, N.; Wisesa, H.A.; Jatmiko, W. Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion. Information 2019, 10, 382. https://doi.org/10.3390/info10120382
Purbarani SC, Sanabila HR, Wibisono A, Alfiany N, Wisesa HA, Jatmiko W. Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion. Information. 2019; 10(12):382. https://doi.org/10.3390/info10120382
Chicago/Turabian StylePurbarani, Sumarsih C., Hadaiq R. Sanabila, Ari Wibisono, Noverina Alfiany, Hanif A. Wisesa, and Wisnu Jatmiko. 2019. "Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion" Information 10, no. 12: 382. https://doi.org/10.3390/info10120382
APA StylePurbarani, S. C., Sanabila, H. R., Wibisono, A., Alfiany, N., Wisesa, H. A., & Jatmiko, W. (2019). Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion. Information, 10(12), 382. https://doi.org/10.3390/info10120382