Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Continuous Conditional Random Fields (CCRF)
2.2. Extreme Learning Machine (ELM)
3. Materials and Methods
3.1. Standard CCRF
3.2. DM-CCRF
3.3. Learning and Inference in DM-CCRF
4. Results and Discussion
4.1. Experimental Setup
4.1.1. Dataset
4.1.2. Baseline Regressor
4.2. Results and Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Board, T.R. Expanding Metropolitan Highways: Implication for Air Quality and Energy Use—Special Report 245; The National Academic Press: Washington, DC, USA, 1995. [Google Scholar]
- Chen, Y.; Guizani, M.; Zhang, Y.; Wang, L.; Crespi, N.; Lee, G.M.; Wu, T. When traffic flow prediction meets wireless big data analytics. IEEE Netw. 2019, 33, 161–167. [Google Scholar] [CrossRef]
- Lighthill, M.J.; Whitham, G.B. On kinematic waves II: A theory of traffic flow on long crowded roads. Proc. R. Soc. A Math. Phys. Eng. Sci. 1955, 229, 317–345. [Google Scholar]
- Gazis, D.C. Traffic Theory; Kluwer Academic Publishers: Norwell, MA, USA, 2002. [Google Scholar]
- Emami, A.; Sarvi, M.; Bagloee, S.A. Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment. J. Mod. Transp. 2019, 27, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Salamanis, A.; Margaritis, G.; Kehagias, D.D.; Matzoulas, G.; Tzovaras, D. Identifying patterns under bot normal and abnormal traffic conditions for short-term traffic prediction. Transp. Res. Procedia 2017, 22, 665–674. [Google Scholar] [CrossRef]
- Duan, P.; Mao, G.; Yue, W.; Wang, S. A unified STARIMA based model for short-term traffic flow prediction. In Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Wang, C.; Ran, B.; Zhang, J.; Qu, X.; Yang, H. A novel approach to estimate freeway traffic state: Parallel computing and improved Kalman filter. IEEE Intell. Transp. Syst. Mag. 2018, 10, 180–193. [Google Scholar] [CrossRef]
- Wei, C.; Asakura, Y. A Bayesian approach to traffic estimation in stochastic user equilibrium networks. In 20th International Symposium on Transportation and Traffic Theory; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zhu, Z.; Zhu, S.; Zheng, Z.; Yang, H. A generalized Bayesian traffic model. Transp. Res. Part C 2019, 108, 182–206. [Google Scholar] [CrossRef]
- Marzano, V.; Papola, A.; Simonelli, F.; Papageorgiou, M. A Kalman filter for Quasi-Dynamic o-d flow estimation/updating. IEEE Trans. Intell. Transp. Syst. 2019, 19, 3604–3612. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, Z.; Yang, J.; Yu, Y.; Zhou, T.; Qin, J. A noise-immune Kalman filter for short-term traffic flow forecasting. Phys. A 2019, 536, 122601. [Google Scholar] [CrossRef]
- Duan, P.; Mao, G.; Zhang, C.; Kang, J. A trade-off between accuracy and complexity: Short-term traffic flow prediction with spational-temporal correlations. In Proceedings of the 21th International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Alghamdi, T.; Elgazzar, K.; Bayoumi, M.; Sharaf, T.; Shah, S. Forecasting traffic congestion using ARIMA modeling. In Proceedings of the 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Chu, K.C.; Saigal, R.; Saitou, K. Real-time traffic prediction and probing strategy for Lagrangian traffic data. IEEE Trans. Intell. Transp. Syst. 2019, 20, 497–506. [Google Scholar] [CrossRef]
- Tu, Q.; Cheng, L.; Li, D.; Ma, J.; Sun, C. Stochastic transportation network considering ATIS with the information of environmental cost. Sustainability 2018, 10, 3861. [Google Scholar] [CrossRef] [Green Version]
- Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A review of machine learning and IoT in smart transportation. Future Internet 2019, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Fouladgar, M.; Parchami, M.; Elmasri, R.; Ghaderi, A. Scalable deep traffic flow neural networks for urban traffic congestion prediction. In Proceedings of the International Joint Conference on Neural Network (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2251–2258. [Google Scholar]
- Chen, Y.; Chen, F.; Ren, Y.; Wu, T.; Yao, Y. DeepTFP: Mobile Time Series Data Analytics Based Traffic Flow Prediction; MobiCom: Ulaanbaatar, Mongolia, 2017; pp. 537–539. [Google Scholar]
- Tian, Y.; Zhang, K.; Li, J.; Lin, X.; Yang, B. LSTM-based traffic flow prediction with missing data. Neurocomputing 2018, 318, 297–305. [Google Scholar] [CrossRef]
- Yang, B.; Sun, S.; Li, J.; Lin, X.; Tian, Y. Traffic flow prediction using LSTM with feature enhancement. Neurocomputing 2019, 332, 320–327. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, G.; Sun, L.; Wang, X.; Xu, X. A hybrid temporal association rules mining method for traffic congestion prediction. Comput. Ind. Eng. 2019, 130, 779–787. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Neural network architecture based on gradient boosting for IoT traffic prediction. Future Gener. Comput. Syst. 2019, 100, 656–673. [Google Scholar] [CrossRef]
- Lin, L.; Handley, J.C.; Gu, Y.; Zhu, L.; Wen, X.; Sadek, A.W. Quantifying uncertainty in short-term traffic prediction and its application to optimal staffing plan development. Transp. Res. Part C 2018, 92, 323–348. [Google Scholar] [CrossRef]
- Hou, Q.; Leng, J.; Ma, G.; Liu, W.; Cheng, Y. An adaptive hybrid model for short-term urban traffic flow prediction. Phys. A 2019, 527, 121065. [Google Scholar] [CrossRef]
- Jia, R.; Jiang, P.; Liu, L.; Cui, L.; Shi, Y. Data driven congestion trends prediction of urban transportation. IEEE Int. Things J. 2018, 5, 581–591. [Google Scholar] [CrossRef]
- Li, C.; Anavatti, S.G.; Ray, T. Short-term traffic flow prediction using different techniques. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011. [Google Scholar]
- Chi, Z.; Shi, L. Short-term traffic flow forecasting using ARIMa-SVM algorithm and R. In Proceedings of the 5th International Conference on Information Science and Control Engineering, Zhengzhou, China, 20–22 July 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Li, K.L.; Zhai, C.J.; Xu, J.M. Short-term traffic flow prediction using a methodology based on ARIMA and RBF-ANN. In Proceedings of the Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; The MIT Press: Cambridge, MA, USA, 2010; p. 3. [Google Scholar]
- Xing, Y.M.; Ban, X.J.; Liu, R.Y. A short-term traffic flow prediction method based on Kernel Extreme Learning Machine. In Proceedings of the International Conference on Big Data and Smart Computing, Shanghai, China, 15–17 January 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Zu, W.; Xia, Y. Back propagation bidirectional extreme learning machine for traffic flow time series prediction. Neural Comput. Appl. 2019, 31, 7401–7417. [Google Scholar] [CrossRef]
- Ban, X.; Guo, C.; Li, G. Application of extreme learning machine on large scale traffic congestion prediction. In Proceedings of ELM-2015 Volume 1; Springer: Cham, Switzerland, 2015; pp. 293–305. [Google Scholar]
- Zhang, Q.; Jian, D.; Xu, R.; Dai, W.; Liu, Y. Integrating heterogeneous data sources for traffic flow prediction through extreme learning machine. In Proceedings of the IEEE International Conference on Big Data (BIGDATA), Boston, MA, USA, 11–14 December 2017. [Google Scholar]
- Xing, Y.; Ban, X.; Liu, X.; Shen, Q. Large-scale traffic congestion prediction based on the symmetric extreme learning machine cluster fast learning method. Symmetry 2019, 11, 730. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.F.; Dillon, T.S.; Chang, E.; Chen, Y.P.P. Optimized configuration of exponential smoothing and extreme learning machine for traffic flo9w forecasting. IEEE Trans. Ind. Inform. 2019, 15, 23–34. [Google Scholar] [CrossRef]
- Feng, W.; Chen, H.; Zhang, Z. Short-term traffic flow prediction based on wavelet function and extreme learning machine. In Proceedings of the 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China, 25–27 May 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Radosavljevic, V.; Vucetic, S.; Obradovic, Z. Continuous conditional random fields for regression in remote sensing. In Proceedings of the European Conference on Artificial Intelligence (ECAI), Lisbon, Portugal, 16–20 August 2010; pp. 809–814. [Google Scholar]
- Baltrusaitis, T.; Banda, N.; Robinson, P. Dimensional affect recognition using continuous conditional random. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, Shanghai, China, 22–26 April 2013. [Google Scholar]
- Baltrusaitis, T. Automatic Facial Expression Analysis; University of Cambridge: Cambridge, UK, 2014. [Google Scholar]
- Baltrusaitis, T.; Robinson, P.; Morency, L. Continuous conditional neural fields for structured regressions. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 5–12 September 2014; pp. 1–16. [Google Scholar]
- Fu, K.; Gu, I.Y.H.; Yang, J. Saliency detection by fully learning a continuous conditional random filed. IEEE Trans. Multimed. 2017, 19, 1531–1544. [Google Scholar] [CrossRef]
- Xu, D.; Ricci, E.; Ouyang, W.; Wang, X.; Sebe, N. Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Banda, N.; He, L.; Engelbrecht, A. Bio-acoustic emotion recognition using continuous conditional recurrent fields. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017. [Google Scholar]
- Zhou, H.; Ouyang, W.; Cheng, J.; Wang, X.; Li, H. Deep continuous conditional random fields with asymmetric inter-object constraints for online multi-object tracking. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 1011–1022. [Google Scholar] [CrossRef]
- Imbrasaite, V.; Baltrusaitis, T.; Robinson, P. CCNF for continuous emotion tracking in music: Comparison with CCRF and relative feature representation. In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Chengdu, China, 14–18 July 2014; pp. 1–6. [Google Scholar]
- Qin, T.; Liu, T.; Zhang, X.; Wang, D.; Li, H. Global ranking using continuous conditional random fields. In Advances in Neural Information Processing Systems; Neural Information Processing Systems (NIPS): Vancouver, BC, Canada, 2009; pp. 1281–1288. [Google Scholar]
- Gewali, U.B.; Monteiro, S.T. A tutorial on modeling and inference in undirected graphical models for hyperspectral image analysis. Int. J. Remote Sens. 2018, 39, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Ristovski, K.; Radosavljevic, V.; Vucetic, S.; Obradovic, Z. Continuous conditional random fields for efficient regression in large fully connected graphs. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Washington, DC, USA, 14–18 July 2013. [Google Scholar]
- UK Highways Agency. Highways Agency Network Journey Time and Traffic Flow Data. Retrieved June 12, 2014, from Data.go.uk. Available online: https://data.gov.uk/dataset/dc18f7d5-2669-490f-b2b5-77f27ec133ad/highways-agency-network-journey-time-and-traffic-flow-data (accessed on 2 December 2019).
- Wibisono, A.; Jatmiko, W.; Wisesa, H.A.; Hardjono, B.; Mursanto, P. Traffic big data prediction and visualization using Fast Incremental Model Trees-Drift Detection (FIMT-DD). Knowl. Based Syst. 2016, 93, 33–46. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [Google Scholar]
- Ding, S.; Xu, X.; Nie, R. Extreme learning machine and its applications. Neural Comput. Appl. 2013, 25, 549–556. [Google Scholar] [CrossRef]
Scenarios | Kernel Parameter | Coefficient of Regularization |
---|---|---|
1 | 1 | 1 |
2 | 1 | 5 |
3 | 1 | 10 |
4 | 1 | 50 |
5 | 1 | 100 |
6 | 1 | 500 |
7 | 1 | 1000 |
8 | 1 | 10,000 |
9 | 1 | 1,000,000 |
10 | 1,000,000 | 5 |
11 | 1,000,000 | 10 |
12 | 1,000,000 | 50 |
13 | 1,000,000 | 100 |
14 | 1,000,000 | 1000 |
15 | 1,000,000 | 10,000 |
Scenarios | Performance Evaluation (MAPE) | ||
---|---|---|---|
ELM (%) | CCRF (%) | DM-CCRF (%) | |
1 | 87.949 | 87.112 | 80.312 |
2 | 80.598 | 79.521 | 73.916 |
3 | 75.993 | 74.774 | 69.706 |
4 | 62.563 | 62.281 | 57.903 |
5 | 56.531 | 56.404 | 52.663 |
6 | 49.268 | 47.667 | 46.314 |
7 | 48.255 | 47.328 | 45.342 |
8 | 47.331 | 46.265 | 44.966 |
9 | 56.267 | 54.286 | 52.796 |
10 | 52.136 | 49.747 | 48.400 |
11 | 57.906 | 57.067 | 53.297 |
12 | 93.272 | 92.585 | 84.893 |
13 | 103.026 | 102.459 | 93.925 |
14 | 110.763 | 109.814 | 100.349 |
15 | 184.762 | 177.132 | 167.715 |
Average | 77.775 | 76.296 | 71.500 |
Head-to-Head | 0 | 0 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purbarani, S.C.; Sanabila, H.R.; Wibisono, A.; Alfiany, N.; Wisesa, H.A.; Jatmiko, W. Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion. Information 2019, 10, 382. https://doi.org/10.3390/info10120382
Purbarani SC, Sanabila HR, Wibisono A, Alfiany N, Wisesa HA, Jatmiko W. Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion. Information. 2019; 10(12):382. https://doi.org/10.3390/info10120382
Chicago/Turabian StylePurbarani, Sumarsih C., Hadaiq R. Sanabila, Ari Wibisono, Noverina Alfiany, Hanif A. Wisesa, and Wisnu Jatmiko. 2019. "Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion" Information 10, no. 12: 382. https://doi.org/10.3390/info10120382
APA StylePurbarani, S. C., Sanabila, H. R., Wibisono, A., Alfiany, N., Wisesa, H. A., & Jatmiko, W. (2019). Distance-To-Mean Continuous Conditional Random Fields: Case Study in Traffic Congestion. Information, 10(12), 382. https://doi.org/10.3390/info10120382