Kadaster Knowledge Graph: Beyond the Fifth Star of Open Data
Abstract
:1. Introduction
2. Kadaster: Context and Data
3. Open Data in Graphs
3.1. Five Stars of Open Data
3.2. Linked Data
3.3. Knowledge Graphs
- It is a graph composed of statements about the real world.
- It has both instances and schema.
- It covers more than one knowledge domain.
4. Building the Graph
4.1. Moving from the Third Star
4.2. Five-Star Data: Linking
5. Kadaster Knowledge Graph
5.1. Data Sources
5.2. The Graph
6. Use Cases
6.1. Case 1. Data Browsing: Follow Your Nose
6.2. Case 2. Urban Planning: Candidate Areas for Urban Development
6.3. Case 3. Loki: Chatbot for Spatial Questions
- What is the real-estate value of a house?
- What is the year of construction of a house?
- What is the average area of the houses in a street?
- Where is my plot?
- What are the houses in Oranje that were built after 2000?
- What is the oldest house in Haarlem?
- Give me all of the churches built before 1500 in Dordrecht.
7. Discussion
7.1. Construction and Maintanace: Automation
7.2. From UML to OWL
7.3. Sources of Links: Space and Case
7.4. Access to Governmental Object-Based Intelligence
8. Conclusions and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singhal, A. Introducing the Knowledge Graph: Things, Not Strings. Google Blog Post. 2012. Available online: https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ (accessed on 1 August 2019).
- Gartner. Gartner Identifies Five Emerging Technology Trends That Will Blur the Lines between Human and Machine. Available online: https://www.gartner.com/en/newsroom/press-releases/2018-08-20-gartner-identifies-five-emerging-technology-trends-that-will-blur-the-lines-between-human-and-machine (accessed on 1 August 2019).
- Hamad, F.; Liu, I.; Zhang, X. Food Discovery with Uber Eats: Building a Query Understanding Engine. Uber Engineering. 2018. Available online: https://eng.uber.com/uber-eats-query-understanding/ (accessed on 1 August 2019).
- Chang, S. Scaling Knowledge Access and Retrieval at Airbnb. Airbnb Engineering and Data Science. 2018. Available online: https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95 (accessed on 1 August 2019).
- Song, D.; Schilder, F.; Hertz, S.; Saltini, G.; Smiley, C.; Nivarthi, P.; Hazai, O.; Landau, D.; Zaharkin, M.; Zielund, T.; et al. Building and querying an enterprise knowledge graph. IEEE Trans. Serv. Comput. 2017, 12, 356–369. [Google Scholar] [CrossRef]
- Kari, K. The Art of Ontology: Introducing Semantic Web Technologies at Zalando. 2018. Available online: https://jobs.zalando.com/tech/blog/semantic-web-technologies/index.html?gh_src=4n3gxh1 (accessed on 1 August 2019).
- Bloomberg. Bloomberg Launches “Ready-to-Use” Data Website to Help Firms Derive Value and Enterprise-Wide Efficiencies. 2018. Available online: https://www.bloomberg.com/company/announcements/bloomberg-launches-ready-to-use-data-we (accessed on 1 August 2019).
- Hubauer, T.; Lamparter, S.; Haase, P.; Herzig, D.M. Use Cases of the Industrial Knowledge Graph at Siemens. In Proceedings of the International Semantic Web Conference (P&D/Industry/BlueSky) 2018, Monterey, CA, USA, 8–12 October 2018; Available online: http://iswc2018.semanticweb.org/sessions/use-cases-of-the-industrial-knowledge-graph-at-siemens (accessed on 1 August 2019).
- Li, H.; Liu, Y.; Mamoulis, N.; Rosenblum, D.S. Translation-based sequential recommendation for complex users on sparse data. IEEE Trans. Knowl. Data Eng. 2019. [Google Scholar] [CrossRef]
- Marino, K.; Salakhutdinov, R.; Gupta, A. The more you know: Using knowledge graphs for image classification. arXiv 2016, arXiv:1612.04844. [Google Scholar]
- RDF 1.1 Concepts and Abstract Syntax. Available online: https://www.w3.org/TR/rdf11-concepts/ (accessed on 1 August 2019).
- Beek, W.; Schlobach, S.; van Harmelen, F. A Contextualised Semantics for owl: SameAs. In International Semantic Web Conference; Springer: Cham, Germany, 2016; pp. 405–419. [Google Scholar]
- Overheid BRT. Basisregistratie Topografie (BRT). Available online: https://brt.basisregistraties.overheid.nl/ (accessed on 1 August 2019).
- Overheid BAG. Basisregistratie Adressen en Gebouwen (BAG). Available online: https://bag.basisregistraties.overheid.nl/ (accessed on 1 August 2019).
- Ehrlinger, L.; Wöß, W. Towards a Definition of Knowledge Graphs. In Proceedings of the SEMANTiCS Posters and Demos Track, Leipzig, Germany, 13–14 September 2016; Volume 48. [Google Scholar]
- Wilcke, X.; Bloem, P.; de Boer, V. The knowledge graph as the default data model for learning on heterogeneous knowledge. Data Sci. 2017, 1, 39–57. [Google Scholar] [CrossRef] [Green Version]
- Paulheim, H. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web 2017, 8, 489–508. [Google Scholar] [CrossRef]
- Linked Data: Design Issues. Available online: http://www.w3.org/designissues/linkeddata.html (accessed on 1 August 2019).
- Silberschatz, A.; Korth, H.F.; Sudarshan, S. Data models. ACM Comput. Surv. 1996, 28, 105–108. [Google Scholar] [CrossRef]
- Hypertext Transfer Protocol—HTTP/1.1. Available online: https://tools.ietf.org/html/rfc2616 (accessed on 1 August 2019).
- Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and Complexity of SPARQL. In International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2006; pp. 30–43. [Google Scholar] [Green Version]
- Folmer, E.; Beek, W. Kadaster Data Platform—Overview Architecture. In Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings; ScholarWorks@UMass: Boston, MA, USA, 2017; Volume 17, Article 23; Available online: http://scholarworks.umass.edu/foss4g/vol17/iss1/23 (accessed on 1 August 2019).
- Goodwin, J.; Dolbear, C.; Hart, G. Geographical linked data: The administrative geography of Great Britain on the semantic web. Trans. GIS 2008, 12, 19–30. [Google Scholar] [CrossRef]
- Debruyne, C.; Meehan, A.; Clinton, É.; McNerney, L.; Nautiyal, A.; Lavin, P.; O’Sullivan, D. Ireland’s Authoritative Geospatial Linked Data. In International Semantic Web Conference; Springer: Cham, Germany, 2017; pp. 66–74. [Google Scholar]
- de León, A.; Saquicela, V.; Vilches, L.M.; Villazón-Terrazas, B.; Priyatna, F.; Corcho, O. Geographical linked data: A Spanish use case. In Proceedings of the 6th International Conference on Semantic Systems, Graz, Austria, 1–3 September 2010; ACM: New York, NY, USA, 2010; p. 36. [Google Scholar]
- Ronzhin, S.; Folmer, E.; Lemmens, R.; Mellum, R.; von Brasch, T.E.; Martin, E.; Romero, E.L.; Kytö, S.; Hietanen, E.; Latvala, P. Next Generation of Spatial Data Infrastructure: Lessons from Linked Data implementations across Europe. Int. J. Spat. Data Infrastruct. Res. 2019, 14, 84–106. [Google Scholar]
- Ballatore, A.; Bertolotto, M.; Wilson, D. A structural-lexical measure of semantic similarity for geo-knowledge graphs. ISPRS Int. J. Geo-Inf. 2015, 4, 471–492. [Google Scholar] [CrossRef]
- Fellbaum, C. WordNet: An Electronic Lexical Database; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Wikidata. Available online: https://www.wikidata.org/wiki/Wikidata:Main_Page (accessed on 1 August 2019).
- Wikimedia. Available online: https://www.wikimedia.org/ (accessed on 1 August 2019).
- Geonames. Available online: http://www.geonames.org/ (accessed on 1 August 2019).
- Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.; Cyganiak, R.; Hellmann, S. DBpedia-A crystallization point for the Web of Data. Web Semant. Sci. Serv. Agents World Wide Web 2009, 7, 154–165. [Google Scholar] [CrossRef]
- Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A large ontology from wikipedia and wordnet. Web Semant. Sci. Serv. Agents World Wide Web 2008, 6, 203–217. [Google Scholar] [CrossRef]
- The Linked Open Data Cloud. Available online: https://lod-cloud.net/ (accessed on 1 August 2019).
- Auer, S.; Lehmann, J.; Hellmann, S. Linkedgeodata: Adding a spatial dimension to the web of data. In International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2009; pp. 731–746. [Google Scholar]
- Data on the Web Best Practices. W3C Recommendation. Retrieved. Available online: https://www.w3.org/TR/dwbp/ (accessed on 1 August 2019).
- Spatial Data on the Web Best Practices. W3C Working Group Note. Available online: https://www.w3.org/TR/sdw-bp/ (accessed on 1 August 2019).
- Brattinga, M.; Maria, P. The geospatial knowledge graph: From traditional UML defined datasets to Linked Data. In Proceedings of the Semantics 2019 Conference, Karlsruhe, Germany, 11 October 2019; Available online: https://2019.semantics.cc/geospatial-knowledge-graph-traditional-uml-defined-datasets-linked-data (accessed on 17 September 2019).
- Knublauch, H.; Kontokostas, D. Shapes Constraint Language (SHACL). 2017. Available online: https://www.w3.org/TR/shacl/ (accessed on 17 September 2019).
- Black, J. On the Derivation of Value from Geospatial Linked Data. Ph.D. Thesis, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK, 2013. Available online: https://eprints.soton.ac.uk/358899/ (accessed on 1 August 2019).
- Battle, R.; Kolas, D. Geosparql: Enabling a geospatial semantic web. Semant. Web J. 2011, 3, 355–370. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2d knowledge graph embeddings. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2013; pp. 2787–2795. [Google Scholar]
- Liu, Y.; Li, H.; Garcia-Duran, A.; Niepert, M.; Onoro-Rubio, D.; Rosenblum, D.S. MMKG: Multi-modal Knowledge Graphs. In European Semantic Web Conference; Springer: Cham, Germany, 2019; pp. 459–474. [Google Scholar]
- Marchionini, G. Exploratory search: From finding to understanding. Commun. ACM 2006, 49, 41–46. [Google Scholar] [CrossRef]
- Janowicz, K.; van Harmelen, F.; Hendler, J.A.; Hitzler, P. Why the data train needs semantic rails. AI Mag. 2014, 36. [Google Scholar] [CrossRef]
- Brunetti, J.M.; Auer, S.; García, R.; Klímek, J.; Nečaský, M. Formal linked data visualization model. In Proceedings of the International Conference on Information Integration and Web-Based Applications & Services, Vienna, Austria, 2–4 December 2013; ACM: New York, NY, USA, 2013; p. 309. [Google Scholar]
- PDOK Knowledge Graph Browser. Available online: http://linkeddata.ordina.nl/pdkg/resource?subject (accessed on 17 September 2019).
- Use Case: PDOK Knowledge Graph. Available online: https://labs.kadaster.nl/cases/pdok-knowledge-graph (accessed on 17 September 2019).
- Linked Data Theatre. Available online: https://github.com/architolk/Linked-Data-Theatre (accessed on 17 September 2019).
- van den Brink, L.; Janssen, P.; Quak, W.; Stoter, J. Linking spatial data: Semi-automated conversion of geo-information models and GML data to RDF. Int. J. Spat. Data Infrastruct. Res. 2014, 9, 59–85. [Google Scholar]
- Johnston, C.; Wright, E.C., Jr.; Bice, J.; Almendarez, J.; Creekmore, L. Transforming defense analysis. JFQ Jt. Force Q. 2015, 79, 12–18. [Google Scholar]
English Name (Dutch Name) | Number of Statements | Web Link | Data Owner (Dutch Name) | |
---|---|---|---|---|
1 | Base register of addresses and buildings (Basisregistratie adressen en gebouwen (BAG)) | ~1,000,000,000 | bag.basisregistraties.overheid.nl | Kadaster |
2 | Base register of topography (Basisregistratie topografie (BRT)) | ~300,000,000 | brt.basisregistraties.overheid.nl | Kadaster |
3 | Base land register (Basisregistratie Kadaster (BRK)) | ~400,000,000 | brk.basisregistraties.overheid.nl | Kadaster |
4 | Key figures districts and neighborhoods (Kerncijfers wijken en buurten (KWB)) | ~10,000,000 | betalinkeddata.cbs.nl1 | Statistics Netherlands (Centraal Bureau voor de Statistiek (CBS)) |
5 | Government Web Metadata Standard (Overheid Web Metadata Standaard (OWMS)) | ~10,000 | standaarden.overheid.nl/owms/terms | Centre for Official Publications (Kennis - en Exploitatiecentrum voor Officiële Overheidspublicaties (KOOP)) |
6 | Basic geo-information model (Basismodel geo-informatie (NEN3610)) | ~1000 | geonovum.github.io/NEN3610-Linkeddata/ | Geonovum |
English Name (Dutch Name) | Number of Statements | Web Link | Data Owner (Dutch Name) | |
---|---|---|---|---|
7 | Spatial planning (Ruimtelijke ordening) | ~1,000,000 | under construction 1 | Spatial Information Warehouse (Informatiehuis Ruimte) |
8 | Cultural heritage (Cultureel erfgoed) | ~65,000,000 | linkeddata.cultureelerfgoed.nl | Cultural Heritage Agency (Rijksdienst voor Cultureel Erfgoed (RCE)) |
English Name (Dutch Name) | Number of Statements | Web Link | Data Owner (Dutch Name) | |
---|---|---|---|---|
9 | Energy labels of buildings in Dordrecht (Dordrecht woning energielabels) | ~500,000 | data.labs.kadaster.nl/kadaster/energielabels | The Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland (RVO)) |
10 | Base-register of real estate values (Waardering Onroerende Zaken (WOZ)) | ~160,000,000 | data.labs.kadaster.nl/kadaster/woz | Council for Real Estate Assessment (Waarderingskamer) |
English Name (Dutch Name) | Number of Statements | Web Link | Data Owner (Dutch Name) | |
---|---|---|---|---|
11 | Linkset BAG–BRK | ~11,000,000 | data.labs.kadaster.nl/kadaster/bag-brk | Kadaster |
12 | Linkset BAG–BRT | ~10,000,000 | under construction 1 | Kadaster |
Relation Name | RDF Term | Relation Type | |
---|---|---|---|
1 | is a | rdf:type | thematic relation |
2 | is same as | owl:sameAs | thematic relation |
3 | is primary topic of | foaf:primaryTopic | thematic relation |
4 | has area | bbi:heeftGebeid | thematic relation |
5 | is within | ogc:sfWithin | spatial relation |
6 | contains | ogc:sfContains | spatial relation |
7 | overlaps | ogc:sfOverlaps | spatial relation |
8 | touches | ogc:sfTouches | spatial relation |
9 | intersects | ogc:sfIntersects | spatial relation |
10 | is equal to | ogc:sfEquals | spatial relation |
Criteria | Threshold | Data Provider |
---|---|---|
Average tax value of a house | <150,000 € | Council for Real Estate Assessment (Waarderingskamer) |
Year of construction | Before 1970 | Kadaster |
Energy efficiency | D (or lower) | The Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland (RVO)) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronzhin, S.; Folmer, E.; Maria, P.; Brattinga, M.; Beek, W.; Lemmens, R.; van’t Veer, R. Kadaster Knowledge Graph: Beyond the Fifth Star of Open Data. Information 2019, 10, 310. https://doi.org/10.3390/info10100310
Ronzhin S, Folmer E, Maria P, Brattinga M, Beek W, Lemmens R, van’t Veer R. Kadaster Knowledge Graph: Beyond the Fifth Star of Open Data. Information. 2019; 10(10):310. https://doi.org/10.3390/info10100310
Chicago/Turabian StyleRonzhin, Stanislav, Erwin Folmer, Pano Maria, Marco Brattinga, Wouter Beek, Rob Lemmens, and Rein van’t Veer. 2019. "Kadaster Knowledge Graph: Beyond the Fifth Star of Open Data" Information 10, no. 10: 310. https://doi.org/10.3390/info10100310
APA StyleRonzhin, S., Folmer, E., Maria, P., Brattinga, M., Beek, W., Lemmens, R., & van’t Veer, R. (2019). Kadaster Knowledge Graph: Beyond the Fifth Star of Open Data. Information, 10(10), 310. https://doi.org/10.3390/info10100310