# Information Models of Acupuncture Analgesia and Meridian Channels

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results and Discussion

**Figure 1.**Our model of acupuncture (or EA) point. The ashi point is at the pain point. The directions of meridian channel currents are assumed.

**Figure 2.**Our models of interactions between acupuncture and nervous sensors at an ashi point. (

**a**) No treatment; and treatment with (

**b**,

**c**) manual mechanic stimulation; and (

**d**,

**e**) automatic electric stimulation. We assume the sensors have net negative charges. The directions of the meridian channel currents are assumed.

**Figure 3.**Our model of the nervous II (EFI) of acupuncture (or EA), pain, descending and inter in a spinal cord. Neuronal transmitters, endorphins, are also included.

_{z}is a wave number in z direction; ω = 2πf, ω and f are fundamental angular frequency and frequency, respectively, they relate to frequencies and intensities (amplitudes) of acupuncture or EA because neuronal information is frequency encoded [34]; a

_{n}and b

_{n}are constants, and the encoded electric current (a vector) in z direction is:

_{0}is a unit vector in z direction. The area averaged and encoded electric current density (a vector) in the z direction is

_{z}(z) is an effective transversal area. The area averaged and encoded EFI (a vector) in z direction is

_{z}is an effective conductivity in the z direction and is approximately assumed to be a constant to simplify our models. Let the area averaged amplitude be

#### 2.1. Information Regulation (Interference) of Frequencies

_{α}are EA related and equation 8 and ω

_{β}are pain related. Therefore, the regulated frequencies are lower than the pain frequency, i.e.,

_{β}relate to EA and Equation 7 and ω

_{α}relate to pain; and 0 < 2ω

_{α}< (ω

_{β}‑ω

_{α}). Therefore, the regulated frequencies are higher than the pain frequency, i.e.,

_{α}≅ ω

_{β}, i.e., frequencies of EA and pain are almost equal, Equation 12 represents a sum of two beat waves. (ω

_{β}–ω

_{α})/2 (see Equation 19) represents a beat frequency that is much lower than the pain frequency. The beat frequency forces the two beat waves to very slowly increase the modulated amplitudes (see Equation 12). The regulation is principally consistent with, or similar to, the amplitude modulation (AM) of the electromagnetic wave. Therefore, the nervous system gradually adapts to the pain (amplitudes). The results could also explain why and how EA works at high frequencies (85–100 Hz), if both frequencies are high and almost equal.

#### 2.2. Information Regulation of Amplitudes

#### 2.3. Information Regulation of Wave Numbers

_{α}

_{z}= –k

_{β}

_{z}(the two waves travel in opposite directions) and ω

_{α}= ω

_{β}(see Equation 19). The result of Equation 12 reduces to a sum of two standing waves:

_{αz}+ 45° = nπ, where n = 0,1,2 ….

## 3. Conclusions

## Acknowledgements

## References

- Fung, Y.L. History of Chinese Philosophy; Princeton University Press: New York, NY, USA, 1952. [Google Scholar]
- TaiGu, Z.R. HuangDi’s Internal Classic; Sichuan Science and Technology Publishing House: Chengdu, SiChuan, China, 1995. [Google Scholar]
- Fung, P.C. Probing the mystery of Chinese medicine meridian channels with special emphasis on the connective tissue interstitial fluid system, mechanotransduction, cells durotaxis and mast cell degranulation. Chin. Med.
**2009**, 4, 10:1-6. [Google Scholar] [CrossRef] - Bäcker, M.; Hammes, M.G.; Valet, M.; Deppe, M.; Conrad, B.; Tölle, T.R.; Dobos, G. Different modes of manual acupuncture stimulation differentially modulate cerebral blood flow velocity, arterial blood pressure and heart rate in human subjects. Neurosci. Lett.
**2002**, 333, 203–206. [Google Scholar] [CrossRef] [PubMed] - Cao, W.; Deng, Y.; Dong, X.; Wang, Y.; Lu, Z. Effects of electroacupuncture at different frequencies on the nociceptive response and central contents of GABA and Glutamic acid in Arthritic Rats. Zhen Ci Yan Jiu
**1993**, 18, 48–52. [Google Scholar] [PubMed] - Wang, Y.; Wang, S. Analgesic effects of electroacupuncture stimulation at different intensities and frequencies. Zhen Ci Yan Jiu
**1993**, 18, 44–47. [Google Scholar] [PubMed] - Lee, J.H.; Beitz, A.J. The Distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia. Pain
**1993**, 52, 11–28. [Google Scholar] [CrossRef] [PubMed] - Ao, M.; Wei, J.; Tan, Z.; Hu, Q.; Tang, J. The influence of electroacupuncture with different frequencies on the discharges of neurons in rostral ventromedial medulla on rats. Zhen Ci Yan Jiu
**1996**, 21, 41–45. [Google Scholar] [PubMed] - Han, Z.; Jiang, Y.H.; Wan, Y.; Wang, Y.; Chang, J.K.; Han, J.S. Endomorphin-1 Meiates 2 Hz but not 100 Hz Electroacupuncture analgesia in the rat. Neurosci. Lett.
**1999**, 274, 75–78. [Google Scholar] [CrossRef] [PubMed] - Hsieh, C.L.; Kuo, C.C.; Chen, Y.S.; Li, T.C.; Hsieh, C.T.; Lao, C.J.; Lee, C.J.; Li, J.G. Analgesic effect of electric stimulation of peripheral nerves with different electric frequencies using the formalin test. Am. J. Chin. Med.
**2000**, 28, 291–299. [Google Scholar] [CrossRef] [PubMed] - Attele, A.S.; Mehendale, S.; Guan, X.; Dey, L.; Yuan, C.S. Analgesic effects of different acupoint stimulation frequencies in humans. Am. J. Chin. Med.
**2003**, 31, 157–162. [Google Scholar] [CrossRef] [PubMed] - Xing, G.G.; Liu, F.Y.; Qu, X.X.; Han, J.S.; Wan, Y. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp. Neurol.
**2007**, 208, 323–232. [Google Scholar] [CrossRef] [PubMed] - Taguchi, T.; Taguchi, R. Effect of varying frequency and duration of electroacupuncture stimulation on Carrageenan-Induced Hyperalgesia. Acupunct. Med.
**2007**, 25, 80–86. [Google Scholar] [CrossRef] [PubMed] - Jiang, Y.X.; Wang, Y.; Liu, H.X. Comparison between therapeutic effects of transcutaneous electrical nerve stimulation with the frequency of 2 Hz and 100 Hz on chronic inflammatory pain in rats. Zhongguo Zhong Xi Yi Jie He Za Zhi
**2001**, 21, 923–925. [Google Scholar] [PubMed] - Bjordal, J.M.; Johnson, M.I.; Ljunggreen, A.E. Transcutaneous Electrical Nerve Stimulation (TENS) can reduce postoperative analgesic consumption. A meta-analysis with assessment of optimal treatment parameters for postoperative pain. Eur. J. Pain
**2003**, 7, 181–188. [Google Scholar] [CrossRef] - Le, K.; Yang, H.Y.; Jiang, J.; Chen, H. Comparison of analgesic effects of electroacupuncture of multi-factor quantitative parameters on inflammatory pain in rats. Zhongguo Zhen Jiu
**2008**, 28, 829–832. [Google Scholar] [PubMed] - Cherkin, D.C; Sherman, K.J.; Avins, A.L.; Erro, J.H.; Ichikawa, L.; Barlow, W.E.; Delaney, K.; Hawkes, R.; Hamilton, L.; Pressman, A.; Khalsa, P.S.; Deyo, R.A. A randomized trial comparing acupuncture, simulated acupuncture, and usual care for chronic low back pain. Arch. Intern. Med.
**2009**, 169, 858–866. [Google Scholar] [CrossRef] - Haake, M.; Müller, H.H.; Schade-Brittinger, C.; Basler, H.D.; Schäfer, H.; Maier, C.; Endres, H.G.; Trampisch, H.J.; Molsberger, A. German Acupuncture Trials (GERAC) for chronic low back pain. Arch. Intern. Med.
**2007**, 167, 1892–1898. [Google Scholar] [CrossRef] [PubMed] - Yuchi, J. Discussion of the relationship between meridians and connective tissues. Nanjing Zhongyi Xueyuan Xuebao
**1986**, 2, 36–37. [Google Scholar] - Du, X.J. The relation of connective tissue to meridian. Zhongguo Zhenjiu
**1989**, 9, 53–54. [Google Scholar] - Dang, R.S; Chen, E.Y.; Shen, X.Y.; Zhu, W.J.; Wang, P.J.; Fei, L. Relation of connective tissue to the acupoints of the lung meridian. Shanghai Zhenjiu Zazhi
**1997**, 16, 28–29. [Google Scholar] - Chen, E.Y.; Shen, X.Y.; Dang, R.S.; Cheng, H.S.; Cai, D.H.; He, W.S.; Fei, L. A relationship between connective tissue and accumulation of calcium with points on GB channel below head. Shanghai Zhenjiu Zazhi
**1998**, 17, 36–37. [Google Scholar] - Shen, X.Y.; Dang, R.S.; Chen, E.Y.; Cheng, H.S.; He, W.Q.; Cai, D.H.; Ding, G.H.; Fei, L. Relation of acupoints of the stomach channel with structure of connective tissue and accumulation of calcium. Zhenci Yanjiu
**1998**, 10, 595–597. [Google Scholar] - Fei, L.; Cheng, H.S.; Cai, D.H.; Yang, S.X.; Xu, J.R.; Chen, E.Y.; Dang, R.S.; Ding, G.H.; Shen, X.Y.; Tang, Y. Experimental investigation and scientific demonstration of the materialistic foundation of meridians and their functional specialties. Kexue Tongbao
**1998**, 43, 658–672. [Google Scholar] - Langevin, H.M.; Yandow, J.A. Relationship of acupuncture points and meridians to connective tissue planes. Anat. Rec.
**2002**, 269, 257–265. [Google Scholar] [CrossRef] [PubMed] - Yuan, L.; Yao, D.W.; Tang, L.; Huang, W.H.; Jiao, P.F.; Lu, Y.T.; Dai, J.X.; Zhang, H.; He, Z.Q.; Zhong, S.Z. A study on morphological basis of chinese acupuncture and Moxibustion from digital human body. Jiepou Xuebao
**2004**, 35, 337–343. [Google Scholar] - Pelletier, K.R. The Best Alternative Medicine; Simon & Schuster: New York, NY, USA, 2007. [Google Scholar]
- Kapit, W.; Macey, R.; Meisami, E. The Physiology Coloring Book, 2nd ed.; Harper & Row: New York, NY, USA, 1999. [Google Scholar]
- Han, J.S. Acupuncture: Neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci.
**2003**, 26, 17–22. [Google Scholar] [CrossRef] - Han, J.S. Acupuncture and endorphins. Neurosci Lett.
**2004**, 361, 258–261. [Google Scholar] [CrossRef] [PubMed] - Lambert, C.; Berlin, I.; Lee, T.L.; Hee, S.W.; Tan, A.S.W.; Picard, D.; Han, J.S. A standardized transcutaneous electric acupoint stimulation for relieving tobacco urges in dependent smokers. eCAM
**2009**, 1–9. [Google Scholar] - Stux, G.; Berman, B.; Pomeranz, B.; Kofen, P.; Sahm, K.A. Basics of Acupuncture, 5th ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Cheng, K.; Zou, C.H. Informatics and physics models of recognitions of DNA replication and their biomedical applications. Am. J. Appl. Sci.
**2006**, 3, 2059–2062. [Google Scholar] [CrossRef] - Cheng, K.; Zou, C.H. Biomedicine and informatics model of Alzheimer’s disease. Am. J. Biochem. Biotechnol.
**2007**, 3, 145–149. [Google Scholar] [CrossRef] - Cheng, K.; Zou, C.H. BioInfoPhysics models of neuronal signal processes based on theories of electromagnetic fields. Am. J. Neurosci.
**2010**, 1, 13–20. [Google Scholar] [CrossRef] - Cheng, K.; Zou, C.H. A logarithmic spiral function to plot a Cochleaogram. Trends. Med. Res.
**2008**, 3, 36–40. [Google Scholar] [CrossRef] - Cheng, K.; Zou, C.H. Four dimensional BioChemInfoPhysics models of cardiac cellular and sub-cellular vibrations (oscillations). Online J. Biol. Sci.
**2009**, 9, 52–61. [Google Scholar] [CrossRef] - Williamson, H. XML: The Complete Reference; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Ross, M.H.; Pawlina, W. Histology: A Text and Atlas: With Correlated Cell and Molecular Biology, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- McCann, S.; Tillotson, J.; Reichert, S.E. Anatomy Coloring Book, 3rd ed.; Kaplan Publishing: New York, NY, USA, 2008. [Google Scholar]
- Purves, D. Neuroscience, 4th ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Cheng, K.; Tarjan, P.P.; Mertz, P.M. Electrical conductivities of pig skin dermis and subcutaneous fat with rectangular pulsed electrical current. Bioelectromagnetics
**1996**, 17, 458–466. [Google Scholar] [CrossRef] [PubMed] - Gabriel, C.; Peyman, A.; Grant, E.H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol.
**2009**, 54, 4863–4878. [Google Scholar] [CrossRef] [PubMed] - Cheng, K.; Tarjan, P.P; Mertz, P.M. In vivo electrical potential and three dimensional electrical fields in pig skin with rectangular pulsed electrical current stimulation. Bioelectromagnetics
**1996**, 17, 253–262. [Google Scholar] - Cheng, K.; Mertz, P.M.; Tarjan, P.P. Theoretical study of Rectangular Pulse Electrical Stimulation (RPES) on skin cells (in vivo) under conforming electrodes. Biomed. Sci. Instrum.
**1993**, 29, 349–354. [Google Scholar] [PubMed] - Cheng, K. A biomechanical model of electroporation of a biological membrane. In Proceedings of 16th Southern Biomedical Engineering Conference, Broadwater Beach Resort, Bilaxi, MS, USA, 4–6 April, 1997; Bumgardner, J.D., Puckett, A.A., Eds.; IEEE: Piscataway, NJ, USA, 1997; pp. 70–73. [Google Scholar]
- Cheng, K.; Tarjan, P.P.; Zou, C.H. Schrodinger equation, Maxwell-Bolzmann distribution and single channel current. Biomed. Sci. Instrum.
**1993**, 29, 361–367. [Google Scholar] [PubMed] - Cheng, K. Improved 3-D quantum mechanical models of ion movements in a cylindrical ion-channel. In Proceedings of 16th Southern Biomedical Engineering Conference, Broadwater Beach Resort, Bilaxi, Mississippi, USA, 4–6 April, 1997; Bumgardner, J.D., Puckett, A.A., Eds.; IEEE: Piscataway, NJ, USA, 1997; pp. 220–223. [Google Scholar]
- Barnes, F.S. Interaction of DC electric fields with living matter. In CRC Handbook of Biological Effects of Electromagnetic Fields; Polk, C., Postow, E., Eds.; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Bendtzen, K.; Ainsworth, M.; Steenholdt, C.; Thomsen, O.Ø.; Brynskov, J. Individual medicine in inflammatory bowel disease: Monitoring Bioavailability, Pharmacokinetics and Immunogenicity of Anti-tumour Necrosis Factor-Alpha Antibodies. Scand. J. Gastroenterol.
**2009**, 44, 774–781. [Google Scholar] [CrossRef] [PubMed] - Han, J.S. Acupuncture research is part of my life. Am. Acad. Pain Med.
**2009**, 10, 611–618. [Google Scholar] [CrossRef] - Morganti, A.G.; Trodella, L.; Valentini, V.; Barbi, S.; Macchia, G.; Mantini, G.; Turriziani, A.; Cellini, N. Pain relief with short-term irradiation in locally advanced Carcinoma of the Pancreas. J. Palliat. Care
**2003**, 19, 258–262. [Google Scholar] [PubMed] - Kenny, D.T.; Faunce, G. The impact of group singing on mood, coping, and perceived pain in chronic pain patients attending a multidisciplinary pain clinic. J. Music Ther.
**2004**, 41, 241–258. [Google Scholar] [CrossRef] [PubMed] - van Weelden, K.; Cevasco, A.M. Recognition of geriatric popular song repertoire: a comparison of geriatric clients and music therapy students. J. Music Ther.
**2010**, 47, 84–99. [Google Scholar] [CrossRef] [PubMed] - Silverman, M.J. The effect of pitch, rhythm, and familiarity on working memory and anxiety as measured by digit recall performance. J. Music Ther.
**2010**, 47, 70–83. [Google Scholar] [CrossRef] [PubMed] - Coulehan, J. Poetry therapy. Patient Educ. Couns.
**2010**, 81, 257–258. [Google Scholar] [CrossRef] [PubMed]

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Cheng, K.; Zou, C.H. Information Models of Acupuncture Analgesia and Meridian Channels. *Information* **2010**, *1*, 153-168.
https://doi.org/10.3390/info1020153

**AMA Style**

Cheng K, Zou CH. Information Models of Acupuncture Analgesia and Meridian Channels. *Information*. 2010; 1(2):153-168.
https://doi.org/10.3390/info1020153

**Chicago/Turabian Style**

Cheng, Kang, and Chang Hua Zou. 2010. "Information Models of Acupuncture Analgesia and Meridian Channels" *Information* 1, no. 2: 153-168.
https://doi.org/10.3390/info1020153