Wildfire Likelihood’s Elements: A Literature Review
Abstract
:1. Introduction
2. The Methodologies behind the Wildfire Likelihood
Preliminary Classification | Factors |
---|---|
A. Climatic Factors | Precipitation 1 |
Temperature 1 | |
Air humidity 1 | |
Wind speed 1 | |
Wind direction 1 | |
Current drought 1 | |
Long-term drought 1 | |
Evapotranspiration 1 | |
Illumination time 1 | |
Illumination intensity 1 | |
B. Topographic Factors | Slope 1 |
Aspect 1 | |
Altitude 1 | |
C. In-situ Factors | Fuel type 2 |
Fuel density 1 | |
Soil moisture 1 | |
Soil texture 2 | |
Soil organic matter 1 | |
Trees age 1 | |
Basal area 1 | |
Hardwood proportion 1 | |
Tree diameter at breast height 1 | |
Disease/illness index 2 | |
D. Historical Factor | Probability of occurrence of a wildfire 1 |
E. Anthropogenic Factors | Proximity to agricultural land 1 |
Proximity to roads 1 | |
Proximity to urban areas (Wildland-Urban Interface) 1 | |
Proximity to recreation areas, breeding grounds, exploitation zones, etc. 1 |
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Jones, R.T.; Ribbe, D.P.; Cunningham, P. Psychosocial correlates of fire disaster among children and adolescents. J. Trauma. Stress 1994, 7, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Carroll, M.S.; Cohn, P. Coping with interface wildfire as a human event: Lessons from the disaster/hazards literature. J. Forest 2004, 102, 28–32. [Google Scholar]
- Shafran, A.P. Risk externalities and the problem of wildfire risk. J. Urban Econ. 2008, 64, 488–495. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildl. Fire 2009, 17, 713–723. [Google Scholar] [CrossRef]
- Zammit, O. Detection of burned areas after a forest fire from a single SPOT 5 satellite image by SVM technology. (Master, Ph.D) Thesis, The Université Nice Sophia Antipolis, Nice, France, 2008. [Google Scholar]
- Bento-Gonçalves, A.; Vieira, A.; Úbeda, X.; Martin, D. Fire and soils: Key concepts and recent advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- National Wildfire Coordinating Group. Glossary of Wildland. Fire Terminology, PMS 205; National Wildfire Coordinating Group: Boise, ID, United States, 2015; p. 189. [Google Scholar]
- Australasian Fire Authorities Council. Bushfire Glossary, East Melbourne, Victoria, Australia; Australasian Fire Authorities Council: East Melbourne, Australia, 2010; p. 27. [Google Scholar]
- European Commission. Forest Fires in Europe 2009, EUR 24502 EN; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2010. [Google Scholar]
- Canadian Interagency Forest Fire Center. Glossary of Forest Fire Management Terms, Winnipeg, Manitoba, Canada; Canadian Interagency Forest Fire Center: Winnipeg, MB, Canada, 2013; p. 61. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010: Main Report; FAO: Rome, Italy, 2010. [Google Scholar]
- Tishkov, A.A. Forest fires and dynamics of forest cover. In Natural Disasters, Encyclopedia of Life Support Systems (EOLSS), UNESCO; Eolss Publishers: Oxford, UK, 2004. [Google Scholar]
- Claridge, A.W.; James, M.T.; Hansen, K. Do fungi have a role as soil stabilizers and remediators after forest fire? Forest Ecol. Manag. 2009, 257, 1063–1069. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; de Bano, L.F. Wildland fire in ecosystems: Effects of fire on soils and water. Gen. Tech. Rep. 2005, 4, 171–178. [Google Scholar]
- USGS (U.S. geological survey) mounting. Wildfire Hazards—A National Threat; USGS: Washington, DC, USA, 2006.
- Zommers, Z.A.; Singh, A. Reducing Disaster: Early Warning Systems for Climate Change; Springer: Berlin, Germany, 2014. [Google Scholar]
- Hardy, C.C.; Hardy, C.E. Fire danger rating in the United States of America: An evolution since 1916. Int. J. Wildl. Fire 2007, 16, 217–231. [Google Scholar] [CrossRef]
- Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Kallos, G.; Matsinos, Y. Integrating new methods and tools in fire danger rating. Int. J. Wildl. Fire 2007, 16, 306–316. [Google Scholar] [CrossRef]
- Miller, C.; Ager, A.A. A review of recent advances in risk analysis for wildfire management. Int. J. Wildl. Fire 2013, 22, 1–14. [Google Scholar] [CrossRef]
- Eira, J.M.P.; Rui, M.N. Study of the causes of forest fires in seven municipalities in the region Central Portugal. Opt. Méditerr. 1995, 25, 79–98. [Google Scholar]
- Colin, P.Y.; Jappiot, M.; Mariel, A. Protection of Forests Against Fire; Cahier FAO Conservation: Rome, Italy, 2001. [Google Scholar]
- Papadopoulos, A.; Paschalidou, A.K.; Kassomenos, P.A.; McGregor, G. Investigating the relationship of meteorological/climatological conditions and wildfires in Greece. Theor. Appl. Climatol. 2013, 112, 113–126. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Paschalidou, A.K.; Kassomenos, P.A.; McGregor, G. On the association between synoptic circulation and wildfires in the Eastern Mediterranean. Theor. Appl. Climatol. 2014, 115, 483–501. [Google Scholar] [CrossRef]
- Long, M.; Ripert, C.; Piana, C.; Jappiot, M.; Lampin-Maillet, C.; Ganteaume, A.; Alexandrian, D.; Rouch, L. Improved knowledge of forest fire causes and implementation of a georeferenced database. Forest Méditerr. 2009, 30, 221–230. [Google Scholar]
- Margerit, J. Modeling and numerical simulation of the spread of forest fires. Ph.D. Thesis, University of Lorraine, Lorraine, France, 1998. [Google Scholar]
- Jappiot, M.; Blanchi, R.; Alexandrian, D. Mapping risk of wildfire: Needs, methods and data standardization test. Forest Méditerr. 2000, 24, 427–434. [Google Scholar]
- Dauriac, F.; Deshayes, M.; Gillon, D.; Roger, J.-M. Monitoring the water content of the Mediterranean vegetation by remote sensing. Application to the risk of forest fire. In Colloque SIRNAT Systèmes d’Information et Risques Naturels; Paris, France, 2001; pp. 6–7. [Google Scholar]
- Carrega, P. The risk of forest fires in the Mediterranean Region: Understanding and evolution. Ph.D. Thesis, The Université de Nice/UMR Espace/CNRS, Nice Cedex, France, 2008. [Google Scholar]
- Setiawan, I.; Mahmud, A.R.; Mansor, S.; Shariff, A.R.M.; Nuruddin, A.A. GIS-grid-based and multi-criteria analysis for I dentifying and mapping peat swamp forest fire hazard in Pahang, Malaysia. Disaster Prev. Manag. Int. J. 2004, 13, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Jappiot, M. Evaluation and mapping of the risk of forest fire. In Rapport Final Division Agriculture et Foret Méditerranéennes CEMAGREF; Groupement d’Aix en Provence: Massif des Maures, France, 1998; p. 32. [Google Scholar]
- Gonzalez, J.R.; Palahi, M.; Trasobares, A.; Pukkala, T. A fire probability model for forest stands in Catalonia (north-east Spain). Ann. Forest Sci. 2006, 63, 169–176. [Google Scholar] [CrossRef]
- Jappiot, M. Developed applications in different themes concerning the Mediterranean forest. Forest Méditerr. 2000, 11, 99–103. [Google Scholar]
- Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol. Appl. 2001, 11, 111–127. [Google Scholar] [CrossRef]
- Haight, R.G.; Cleland, D.T.; Hammer, R.B.; Radeloff, V.C.; Rupp, T.S. Assessing fire risk in the wildland-urban interface. J. Forest 2004, 102, 41–48. [Google Scholar]
- Badia-Perpinya, A.; Pallares-Barbera, M. Spatial distribution of ignitions in Mediterranean periurban and rural areas: The case of Catalonia. Int. J. Wildl. Fire 2006, 15, 187–196. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Chandioux, O.; Lampin-Maillet, C.; Jappiot, M. Development of a typology of fuel for limetsone Provence Basse. Forest Méditerr. 2009, 3, 209–220. [Google Scholar]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Bouillon, C.; Morge, D.; Ferrier, J. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J. Environ. Manag. 2010, 91, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganteaume, A.; Lampin-Maillet, C.; Guijarro, M.; Hernando, C.; Jappiot, M.; Fonturbel, T.; Pérez-Gorostiaga, P.; Vega, J.A. Spot fires: Fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildl. Fire 2010, 18, 951–969. [Google Scholar] [CrossRef]
- Paschalidou, A.K.; Kassomenos, P.A. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology. Sci. Total Environ. 2016, 539, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J.; Pereira, J.M.C. Assessment of fire selectivity in relation to land cover and topography: A comparison between southern European countries. Int. J. Wildl. Fire 2014, 23, 620–630. [Google Scholar] [CrossRef]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Barros, A.M.G.; José, M.C.P. Wildfire selectivity for land cover type: Does size matter? PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Bajocco, S.; Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land-cover classes do wildfires prefer? Landsc. Ecol. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Van Wagner, C.E. The Development and Structure of the Canadian Forest Fire Weather Index System; Forest Technical Report 35; Canadian Forest Service: Ottawa, ON, Canada, 1987. [Google Scholar]
- Alexander, E.M.; de Groot, W.J. Fire Behavior in Jack Pine Stands: As Related to the Canadian Forest Fire Weather Index (FWI) System; Northern Forestry Centre: Edmonton, AB, Canada, 1988. [Google Scholar]
- De Groot, W.J. Interpreting the Canadian forest fire weather index (fwi) system. In Proceedings of the 4th Central Region Fire Weather Committee Scientific and Technical Seminar, Winnipeg, MB, Cananda, 2 April 1987.
- Burgan, R.E.; Klaver, R.W.; Klaver, J.M. Fuel models and fire potential from satellite and surface observations. Int. J. Wildl. Fire 1998, 8, 159–170. [Google Scholar] [CrossRef]
- López, A.S.; San-Miguel-Ayanz, J.; Burgan, R.E. Integration of satellite sensor data, fuel type maps and meteorological observations for evaluation of forest fire risk at the pan-European scale. Int. J. Remote Sens. 2002, 23, 2713–2719. [Google Scholar] [CrossRef]
- Schneider, P.; Roberts, D.A.; Kyriakidis, P.C. A VARI-based relative greenness from MODIS data for computing the Fire Potential Index. Remote Sens. Environ. 2008, 112, 1151–1167. [Google Scholar] [CrossRef]
- Williams, A.A.J.; Karoly, D.J.; Tapper, N. The sensitivity of Australian fire danger to climate change. Clim. Chang. 2001, 49, 171–191. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Graham, A.M.; Finkele, K.; de Groot, W. Index sensitivity analysis applied to the Canadian forest fire weather index and the McArthur forest fire danger index. Meteorol. Appl. 2010, 17, 298–312. [Google Scholar] [CrossRef]
- Bugalho, L.; Pessanha, B.C.; Tavares, R.; Sanchez, J. Monitoring forest fire in Portugal with the Combined Forest Fire Risk Index; ICRIF: Munich, Germany, 2008. [Google Scholar]
- Janis, M.J.; Johnson, M.B.; Forthun, G. Near-real time mapping of Keetch-Byram drought index in the south-eastern United States. Int. J. Wildl. Fire 2002, 11, 281–289. [Google Scholar] [CrossRef]
- Dolling, K.; Chu, P.-S.; Fujioka, F. A climatological study of the Keetch/Byram drought index and fire activity in the Hawaiian Islands. Agric. Forest Meteorol. 2005, 133, 17–27. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Maheras, G.; Gouma, V.; Gouvas, M. Is the Keetch-Byram drought index (KBDI) directly related to plant water stress? Forest Ecol. Manag. 2006, 234, S27–S36. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Harrington, J.B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–1980). J. Appl. Meteorol. 1988, 27, 441–452. [Google Scholar] [CrossRef]
- Masri, T. Forest fire impact assessment, Lebanon. In Towards a Sustainable Mechanism for Forest Fire Fighting in Lebanon; National Council for Scientific Research: Jnah, Lebanon, 2005; p. 51. [Google Scholar]
- Faour, G.; Kheir, R.B.; Verdeil, E. Characterization of forest fires using GIS: The example of Lebanon. Forest Méditerr. 2006, 27, 339–352. [Google Scholar]
- Faour, G.; Kher, R.B.; Darwish, A. Comprehensive evaluation method of the risk of forest fires using remote sensing and GIS: A case study of Lebanon. Télédétection 2006, 5, 359–377. [Google Scholar]
- Stone, K.R.; Pilliod, D.S.; Dwire, K.A.; Rhoades, C.C.; Wollrab, S.P.; Young, M.K. Fuel reduction management practices in riparian areas of the western USA. Environ. Manag. 2010, 46, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Swetnam, T.W.; Betancourt, J.L. Fire-southern oscillation relations in the southwestern United States. Science 1990, 249, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Skinner, W.R.; Flannigan, M.D.; Stocks, B.J.; Martell, D.L.; Wotton, B.M.; Todd, J.B.; Mason, J.A.; Logan, K.A.; Bosch, E.M. A 500 hPa synoptic wildland fire climatology for large Canadian forest fires, 1959–1996. Theor. Appl. Climatol. 2002, 71, 157–169. [Google Scholar] [CrossRef]
- Bachelet, D.; James, M.L.; Ronald, P.N. The Importance of Climate Change for Future Wildfire Scenarios in the Western United States. Available online: http://fusee.org/sandbox/docs/ClimateChange/Wildfires_climate_change.pdf?lbisphpreq=1 (accessed on 7 December 2015).
- De Bano, L.F. Observations on water-repellent soils in western United States. In Proceedings of a Conference on Water Repellent Soils, Riverside, CA, USA, 6–10 May, 1969.
- De Bano, L.F.; Dunn, P.H.; Conrad, C.E. Fire’s effect on physical and chemical properties of chaparral soils. In USDA Forest Service General Technical Report WO-3; USDA Forest Service: Washington, DC, USA, 1977. [Google Scholar]
- Giovannini, G.; Lucchesi, S.; Giachetti, M. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Sci. 1988, 146, 255–261. [Google Scholar] [CrossRef]
- Moody, J.A.; Deborah, A.M. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Processes Landforms 2001, 26, 1049–1070. [Google Scholar] [CrossRef]
- Jo, M.H.; Lee, M.B.; Lee, S.Y.; Jo, Y.W.; Baek, S.R. The development of forest fire forecasting system using internet GIS and satellite remote sensing. In Proceedings of the 21st Asian Conference on Remote Sensing, Taipei, Taiwan, 4–8 December 2000; pp. 1161–1166.
- Graham, R.T.; McCaffrey, S.; Jain, T.B. Science Basis for Changing Forest Structure to Modify Wildfire Behavior and Severity; Utah State University: Logan, UT, USA, 2004. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; U.S. Department of Agriculture: Washington, DC, USA; Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972. [Google Scholar]
- Prestemon, J.P.; Pye, J.M.; Butry, D.T.; Holmes, T.P.; Mercer, D.E. Understanding broadscale wildfire risks in a human-dominated landscape. Forest Sci. 2002, 48, 685–693. [Google Scholar]
- Loehle, C. Applying landscape principles to fire hazard reduction. Forest Ecol. Manag. 2004, 198, 261–267. [Google Scholar] [CrossRef]
- Drouet, J.C. Forest fires in the Mediterranean region. Theory of propagation and effective control methods. Méditerranée 1973, 12, 29–53. [Google Scholar] [CrossRef]
- Beeson, P.C.; Scott, N.M.; Breshears, D.D. Simulating overland flow following wildfire: Mapping vulnerability to landscape disturbance. Hydrol. Processes 2001, 15, 2917–2930. [Google Scholar] [CrossRef]
- Malamud, B.D.; Millington, J.D.A.; Perry, G.L.W. Characterizing wildfire regimes in the United States. Proc. Natl. Acad. Sci. USA 2005, 102, 4694–4699. [Google Scholar] [CrossRef] [PubMed]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. Project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Millington, J.D.A. Wildfire risk mapping: Considering environmental change in space and time. J. Mediterr. Ecol. 2005, 6, 33–42. [Google Scholar]
- Bhandari, S.; Stuart, P.; Tony, G. Assessing viewing and illumination geometry effects on the MODIS vegetation index (MOD13Q1) time series: Implications for monitoring phenology and disturbances in forest communities in Queensland, Australia. Int. J. Remote Sens. 2011, 32, 7513–7538. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations. Global forest fire assessment 990–2000 (Forest Resources Assessment—WP 55); FAO: Rome, Italy, 2001. [Google Scholar]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. Forest Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Doerr, S.; Santín, C. “Wildfire: A Burning Issue for Insurers?”. Available online: http://www.lloyds.com/news-and-insight/risk-insight/library/natural-environment/wildfire-report (accessed on 7 December 2015).
- Staychock, E.S. Understanding Elements Contributing to the Collaborative Development of Community Wildfire Protection Plans. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2008. [Google Scholar]
- Cohen, J.D. Preventing disaster: Home ignitability in the wildland-urban interface. J. Forest 2000, 98, 15–21. [Google Scholar]
- Winter, G.J.; Vogt, C.; Fried, J.S. Fuel treatments at the wildland-urban interface: Common concerns in diverse regions. J. Forest 2002, 100, 15–21. [Google Scholar]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The wildland-urban interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef]
- Theobald, D.M.; Romme, W.H. Expansion of the US wildland—Urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mhawej, M.; Faour, G.; Adjizian-Gerard, J. Wildfire Likelihood’s Elements: A Literature Review. Challenges 2015, 6, 282-293. https://doi.org/10.3390/challe6020282
Mhawej M, Faour G, Adjizian-Gerard J. Wildfire Likelihood’s Elements: A Literature Review. Challenges. 2015; 6(2):282-293. https://doi.org/10.3390/challe6020282
Chicago/Turabian StyleMhawej, Mario, Ghaleb Faour, and Jocelyne Adjizian-Gerard. 2015. "Wildfire Likelihood’s Elements: A Literature Review" Challenges 6, no. 2: 282-293. https://doi.org/10.3390/challe6020282
APA StyleMhawej, M., Faour, G., & Adjizian-Gerard, J. (2015). Wildfire Likelihood’s Elements: A Literature Review. Challenges, 6(2), 282-293. https://doi.org/10.3390/challe6020282