Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX)
Abstract
:1. Introduction
2. The Research Area: Modern Ocean–Atmosphere Forcing, Freshwater Flux, Sea Ice Patterns, and Upper Ocean and Intermediate Water Circulation
3. State of Scientific Knowledge and Hypotheses
3.1. The Pacific Overturning Circulation and Carbon Budget during the Last Glacial
3.2. The Last Glacial Termination in the Subarctic North Pacific
3.3. Upper Ocean Variability during the Present Holocene Warm Period
4. Future Research Targets and Priority Questions
- Do different proxies record the same or different ocean temperature signals?
- How precisely can model outputs and proxy-based datasets be reconciled, or existing offsets mechanistically explained?
- Do proxy data and model result differences change in magnitude and patterns between glacial and interglacial climate states?
- How do temperature and salinity of the ocean surface and upper mixed layer change in the subarctic North Pacific over the last glacial termination?
- Can potential causes for deglacial changes in upper ocean characteristics be identified in model runs and lead to better constraints on dominant forcing factors?
- Are there regional variations in these upper ocean temperature and salinity characteristics between the open subarctic North Pacific and the neighboring marginal seas?
- What is the rate of changes during the most abrupt climate events during deglaciation?
- How are Holocene climatic changes reflected in our extratropical and subarctic upper ocean and atmosphere model and proxy results?
- Can we discriminate between dominant low and high-latitude forcing mechanisms for North Pacific climate variability that shape Holocene subarctic North Pacific hydrography and biogeochemistry on millennial timescales?
- How does the ventilation of North Pacific Intermediate Water respond to surface ocean and sea ice changes?
- How sensitive is the mid-depth water ventilation process to past higher-than-present temperatures and freshwater fluxes, and to potential millennial-scale warm and cold phases within a warm (Holocene) background climate?
- How well do large-scale detailed regional reconstructions of upper ocean temperature and stratification, in connection with high-resolution models used in this project, help to evaluate and constrain existing hypotheses about climate teleconnections and forcing between the North Atlantic and Pacific?
- How well can we compare FESOM model results with quantitative reconstructions of sea ice cover changes on glacial/interglacial and millennial timescales, including differences in distribution between different basins with the existing proxy methods (IP25, transfer functions based on biological proxies)?
- Are deglacial changes in sea surface temperatures and mid-depth ventilation characterized by concomitant changes in sea ice distributions?
- How did sea ice patterns change during warmer-than-present early Holocene climatic boundary conditions?
- Did these climates yield complete loss of sea ice?
- How large are model–data discrepancies?
- How did the meridional overturning circulation (MOC) look when the closed glacial Bering Strait hindered the exchange of freshwater between ocean basins?
- Sensitivity experiments with explicit modeled effect of the Bering Strait throughflow: HS-1 with a closed strait is contrasted to Preboreal conditions with an open strait. It is assumed that an open Bering Strait provides oceanic connections between the Atlantic Ocean and North Pacific hydrography. This gateway effect shall be separated from the effects of the hydrological cycle and the formation of sea ice. Comparative proxy series from the cores on both sides of the Bering Strait will allow reconstructing the hydrographic influence and changing SST, mixed layer depth and salinity gradients between both ocean basins.
5. Conceptual Approach for Future Work
- Combination of high-resolution and long-period marine records at AWI and FIO that, for the first time, effectively cover all key areas for quantifying Arctic–Subarctic climate changes.
- The climate modeling work in AWI makes it possible to integrate the important data-model syntheses aspect into this bilateral cooperation.
5.1. Proxy Data-Based Paleoceanographic Reconstructions
5.2. Paleoclimate Modeling: Numerical Simulations
- To conduct transit ESM simulations from the late glacial to the B/A period, with orbital forcing (16.8–12.7 ka) and prescribed glacial/interglacial land ice distributions.
- Using the ESM version including the ice sheets, a transient experiment from the HS-1 to B/A onset with prescribed and fully interactive ice sheets will be performed. These experiments are established to understand abrupt climate changes during the last deglaciation, especially as the subarctic Pacific climate system has been demonstrated to be sensitive to the sea level changes. This experiment is conducted based on the simulation results of 1.
- To conduct experiments using the isotope-enabled version including the marine carbon industry and oxygen isotope cycle modules, aiming for a direct comparison with proxy reconstructions (C-13; C-14; O-18).
- To conduct simulations with the ESM for the time periods of important climate events during the last glacial periods, e.g., LGM, HS-1, B/A onset, Early Holocene, Mid Holocene, and PI, by changing orbital forcing and prescribed land ice distributions.
- Sensitivity experiments are expected to specify the role of different components in the Earth system.
- To conduct FESOM simulations for detailed ocean circulation changes in the Arctic and subarctic Pacific Oceans (dynamical downscaling of the ocean–sea ice system).
- To perform different time slice experiments under present day, PI, 6 ka, and LGM climate conditions (atmospheric forcing from the ESM). The FESOM model configuration (see Figure 9) will be used to simulate the present day, PI, and 6 ka time slice. The simulation of the LGM conditions requires the design of a further FESOM mesh configuration with a different land–sea mask, due to the sea level being 120 m lower compared to present day. This mesh configuration will be used for sensitivity experiments for the B/A and HS-1.
5.3. Proxy Data Syntheses and Data-Model Comparisons
6. Partners
- The Paleoclimate Dynamics Group (Gerrit Lohmann) is an international team of senior and young scientists coming from different disciplines, such as physics, geosciences, and mathematics. In interdisciplinary research, the group strives to advance the knowledge and understanding of the Earth’s past. The group carries out climate modeling and research in various projects, with both national and international collaborations.
- The Marine Geology Group (Ralf Tiedemann) focuses on the development of a fundamental understanding of Earth’s history and its past evolution. The major research activities are the reconstruction and systematic understanding of past global environmental variability, its mechanisms and impacts, and responses to natural driving forces of climate change. These aims are achieved by interpreting chemical signatures of biologic, oceanographic, and climatic processes that are preserved in the marine sediment record.
7. Expected Outcome and Dissemination of Results, Benefits for Bilateral Exchange, and Education and Outreach
- Understanding the Arctic and Northwest Pacific climate system shows the priority in future marine and polar researches. This project will favor the existing advancements of Germany in these fields.
- In addition, Yang et al. [107] demonstrate that climate variation of the East Asia, especially with the Asia winter monsoon, are in close relationship with European climate change.
- In addition, a visible achievement of this program is to provide the basis for a highly productive grid-based platform, which enables efficient proxy and model data processing and exchange between Germany and China. This also establishes a platform for future German–Sino cooperation programs in marine and polar science.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ohshima, K.I.; Nakanowatari, T.; Riser, S.; Wakatsuchi, M. Seasonal variation in the in- and outflow of the Okhotsk Sea with the North Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1247–1256. [Google Scholar] [CrossRef]
- Katsumata, K.; Ohshima, K.I.; Kono, T.; Itoh, M.; Yasuda, I.; Volkov, Y.N.; Wakatsuchi, M. Water exchange and tidal currents through the Bussol’ Strait revealed by direct current measurements. J. Geophys. Res. Oceans 2004, 109, C09S06. [Google Scholar] [CrossRef]
- Max, L. Millennial-Scale Changes in Sea Surface Temperatures and Intermediate Water Circulation in the Northwest Pacific during the Past 20,000 Years. Ph.D. Thesis, University of Bremen, Bremen, Germany, 2012. [Google Scholar]
- Rodionov, S.N.; Bond, N.A.; Overland, J.E. The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 2560–2577. [Google Scholar] [CrossRef]
- Overland, J.; Adams, J.; Bond, N. Decadal variability of the Aleutian low and its relation to high-latitude circulation. J. Clim. 1999, 12, 1542–1548. [Google Scholar] [CrossRef]
- Pickart, R.S.; Moore, G.W.K.; Macdonald, A.M.; Renfrew, I.A.; Walsh, J.E.; Kessler, W.S. Seasonal Evolution of Aleutian Low Pressure Systems: Implications for the North Pacific Subpolar Circulation. J. Phys. Oceanogr. 2009, 39, 1317–1339. [Google Scholar] [CrossRef]
- Honda, M.; Yamazaki, K.; Tachibana, Y.; Takeuchi, K. Influence of Okhotsk sea-ice extent on atmospheric circulation. Geophys. Res. Lett. 1996, 23, 3595–3598. [Google Scholar] [CrossRef]
- Ogi, M.; Tachibana, Y. Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge. Geophys. Res. Lett. 2006, 33, L08709. [Google Scholar] [CrossRef]
- Ogi, M.; Tachibana, Y.; Yamazaki, K. The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk High. J. Meteorol. Soc. Jpn. 2004, 82, 905–913. [Google Scholar] [CrossRef]
- Tachibana, Y.; Oshima, K.; Ogi, M. Seasonal and interannual variations of Amur River discharge and their relationships to large-scale atmospheric patterns and moisture fluxes. J. Geophys. Res. Atmos. 2008, 113, D16102. [Google Scholar] [CrossRef]
- Ogi, M.; Tachibana, Y.; Nishio, F.; Danchenkov, M. Does the fresh water supply from the Amur river flowing into the sea of Okhotsk affect sea ice formation? J. Meteorol. Soc. Jpn. 2001, 79, 123–129. [Google Scholar] [CrossRef]
- Emile-Geay, J.; Cane, M.; Naik, N.; Seager, R.; Clement, A.; Van Geen, A. Warren revisited: Atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific”. J. Geophys. Res. Ocean. 2003, 108, 3178. [Google Scholar] [CrossRef]
- Warren, B. Why is no deep water formed in the North Pacific? J. Mar. Res. 1983, 41, 327–347. [Google Scholar] [CrossRef]
- Broecker, W.; Clark, E.; Hajdas, I.; Bonani, G. Glacial ventilation rates for the deep Pacific Ocean. Paleoceanography 2004, 19, PA2002. [Google Scholar] [CrossRef]
- Broecker, W.; Clark, E. Search for a glacial-age 14C-depleted ocean reservoir. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Talley, L.D. Distribution and formation of North Pacific intermediate water. J. Phys. Oceanogr. 1993, 23, 517–537. [Google Scholar] [CrossRef]
- Talley, L.; Nagata, Y.; Fujimura, M.; Iwao, T.; Kono, T.; Inagake, D.; Hirai, M.; Okuda, K. North Pacific Intermediate Water in the Kuroshio-Oyashio Mixed Water Region. J. Phys. Oceanogr. 1995, 25, 475–501. [Google Scholar] [CrossRef]
- Kitani, K. An oceanographic study of the Okhotsk Sea - particularly in regard to cold waters. Bull. Far Sear Fish. Res. Lab. 1973, 9, 45–76. [Google Scholar]
- Van Scoy, K.; Olson, D.B.; Fine, R.A. Ventilation of North Pacific Intermediate Water: The role of the Alaskan Gyre. J. Geophys. Res. 1991, 96, 16801–16810. [Google Scholar] [CrossRef]
- Nakanowatari, T.; Ohshima, K.I.; Wakatsuchi, M. Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004. Geophys. Res. Lett. 2007, 34, L04602. [Google Scholar] [CrossRef]
- Feely, R.A.; Sabine, C.L.; Schlitzer, R.; Bullister, J.L.; Mecking, S.; Greeley, D. Oxygen utilization and organic carbon remineralization in the upper water column of the Pacific Ocean. J. Oceanogr. 2004, 60, 45–52. [Google Scholar] [CrossRef]
- Deutsch, C.; Emerson, S.; Thompson, L. Fingerprints of climate change in North Pacific oxygen. Geophys. Res. Lett. 2005, 32, L16604. [Google Scholar] [CrossRef]
- Deutsch, C.; Brix, H.; Ito, T.; Frenzel, H.; Thompson, L. Climate-Forced Variability of Ocean Hypoxia. Science 2011, 333, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.E.; Locarnini, R.A.; Boyer, T.P.; Antonov, J.I.; Baranova, O.K.; Zweng, M.M.; Johnson, D.R. World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation; U.S. Government Printing Office: Washington, DC, USA, 2010; p. 344.
- Sakamoto, T.; Ikehara, M.; Uchida, M.; Aoki, K.; Shibata, Y.; Kanamatsu, T.; Harada, N.; Iijima, K.; Katsuki, K.; Asahi, H. Millennial-scale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr: Age model and ice-rafted debris in IMAGES Core MD01-2412. Glob. Planet. Chang. 2006, 53, 58–77. [Google Scholar] [CrossRef]
- Harada, N.; Ahagon, N.; Sakamoto, T.; Uchida, M.; Ikehara, M.; Shibata, Y. Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky. Glob. Planet. Chang. 2006, 53, 29–46. [Google Scholar] [CrossRef]
- Gorbarenko, S.A.; Psheneva, O.Y.; Artemova, A.V.; Matul, A.G.; Tiedemann, R.; Nuernberg, D. Paleoenvironment changes in the NW Okhotsk Sea for the last 18 kyr determined with micropaleontological, geochemical, and lithological data. Deep Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 797–811. [Google Scholar] [CrossRef]
- Nürnberg, D.; Dethleff, D.; Tiedemann, R.; Kaiser, A.; Gorbarenko, S.A. Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka—Evidence from ice-rafted debris and planktonic δ18O. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 191–205. [Google Scholar] [CrossRef]
- Nürnberg, D.; Tiedemann, R. Environmental change in the Sea of Okhotsk during the last 1.1 million years. Paleoceanography 2004, 19, PA4011. [Google Scholar] [CrossRef]
- Riethdorf, J.R.; Max, L.; Nürnberg, D.; Lembke-Jene, L.; Tiedemann, R. Deglacial history of (sub) sea surface temperatures and salinity in the subarctic NW Pacific: Implications for upper-ocean stratification. Paleoceanography 2013, 28, 91–104. [Google Scholar] [CrossRef]
- Riethdorf, J.R. Late Pleistocene to Holocene Changes in Upper-Ocean Stratification and Its Impact on Marine Productivity, Sea Surface Temperatures, and Salinity in the Subarctic Northwest Pacific. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 2012. [Google Scholar]
- Ovsepyan, E.A.; Ivanova, E.V.; Max, L.; Riethdorf, J.R.; Nuernberg, D.; Tiedemann, R. Late quaternary oceanographic conditions in the Western Bering Sea. Okeanologiya 2013, 53, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Drysdale, R.N.; Hellstrom, J.C.; Zanchetta, G.; Fallick, A.E.; Goni, M.F.S.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I. Evidence for Obliquity Forcing of Glacial Termination II. Science 2009, 325, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Knorr, G.; Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 2003, 424, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Knorr, G.; Lohmann, G.P. Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, G. Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2003, 55, 438–449. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, G.; Lorenz, S. On the hydrological cycle under paleoclimatic conditions as derived from AGCM simulations. J. Geophys. Res. Atmos. 2000, 105, 17417–17436. [Google Scholar] [CrossRef] [Green Version]
- Prange, M.; Romanova, V.; Lohmann, G. The glacial thermohaline circulation: Stable or unstable? Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Romanova, V.; Prange, M.; Lohmann, G. Stability of the glacial thermohaline circulation and its dependence on the background hydrological cycle. Clim. Dyn. 2004, 22, 527–538. [Google Scholar] [CrossRef]
- Kim, J.; Rimbu, N.; Lorenz, S.; Lohmann, G.; Nam, S.; Schouten, S.; Rühlemann, C.; Schneider, R. North Pacific and North Atlantic sea-surface temperature variability during the holocene. Quat. Sci. Rev. 2004, 23, 2141–2154. [Google Scholar] [CrossRef]
- Kim, J.H.; Meggers, H.; Rimbu, N.; Lohmann, G.; Freudenthal, T.; Müller, P.J.; Schneider, R.R. Impacts of the North Atlantic gyre circulation on Holocene climate off northwest Africa. Geology 2007, 35, 387–390. [Google Scholar] [CrossRef]
- Lorenz, S.J.; Lohmann, G. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: Method and application for the Holocene. Clim. Dyn. 2004, 23, 727–743. [Google Scholar] [CrossRef]
- Scholz, P.; Kieke, D.; Lohmann, G.; Ionita, M.; Rhein, M. Evaluation of Labrador Sea Water formation in a global Finite-Element Sea-Ice Ocean Model setup, based on a comparison with observational data. J. Geophys. Res. Oceans 2014, 119, 1644–1667. [Google Scholar] [CrossRef] [Green Version]
- Rühlemann, C.; Mulitza, S.; Lohmann, G.; Paul, A.; Prange, M.; Wefer, G. Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation. Paleoceanography 2004, 19. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, G.; Wackerbarth, A.; Langebroek, P.M.; Werner, M.; Fohlmeister, J.; Scholz, D.; Mangini, A. Simulated European stalagmite record and its relation to a quasi-decadal climate mode. Clim. Past 2013, 9, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Felis, T.; Lohmann, G.; Kuhnert, H.; Lorenz, S.J.; Scholz, D.; Patzold, J.; Al-Rousan, S.A.; Al-Moghrabi, S.M. Increased seasonality in Middle East temperatures during the last interglacial period. Nature 2004, 429, 164–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimbu, N.; Lohmann, G.; Grosfeld, K. Northern Hemisphere atmospheric blocking in ice core accumulation records from northern Greenland. Geophys. Res. Lett. 2007, 34, 5. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Felis, T.; Pätzold, J. Arctic oscillation signature in a Red Sea coral. Geophys. Res. Lett. 2001, 28, 2959–2962. [Google Scholar] [CrossRef]
- Dima, M.; Lohmann, A. Fundamental and derived modes of climate variability: Concept and application to interannual time-scales. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2004, 56, 229–249. [Google Scholar] [CrossRef]
- Leduc, G.; Schneider, R.; Kim, J.H.; Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 2010, 29, 989–1004. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.H. A model-data comparison of the Holocene global sea surface temperature evolution. Clim. Past 2013, 9, 1807–1839. [Google Scholar] [CrossRef]
- Butzin, M.; Prange, M.; Lohmann, G. Radiocarbon simulations for the glacial ocean: The effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth Planet. Sci. Lett. 2005, 235, 45–61. [Google Scholar] [CrossRef]
- Butzin, M.; Lohmann, G.P.; Bickert, T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records. Paleoceanography 2011, 26, PA1203. [Google Scholar] [CrossRef]
- Herold, M.; Lohmann, G. Eemian tropical and subtropical African moisture transport: An isotope modelling study. Clim. Dyn. 2009, 33, 1075–1088. [Google Scholar] [CrossRef]
- Werner, M.; Langebroek, P.M.; Carlsen, T.; Herold, M.; Lohmann, G. Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale. J. Geophys. Res. Atmos. 2011, 116, D15109. [Google Scholar] [CrossRef]
- Xu, X.; Werner, M.; Butzin, M.; Lohmann, G. Water isotope variations in the global ocean model MPI-OM. Geosci. Model Dev. 2012, 5, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Laepple, T.; Werner, M.; Lohmann, G.P. Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales. Nature 2011, 471, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Broecker, W. Glacial to Interglacial Changes in Ocean Chemistry. Prog. Oceanogr. 1982, 11, 151–197. [Google Scholar] [CrossRef]
- Boyle, E.A. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nat. News 1988, 331, 55–56. [Google Scholar] [CrossRef]
- Mix, A.C.; Pisias, N.G.; Zahn, R.; Rugh, W.; Lopez, C.; Nelson, K. Carbon 13 in Pacific Deep and Intermediate Waters, 0–370 ka: Implications for Ocean Circulation and Pleistocene CO2. Paleoceanography 1991, 6, 205–226. [Google Scholar] [CrossRef]
- Zahn, R.; Pedersen, T.F.; Bornhold, B.D.; Mix, A.C. Water Mass Conversion in the Glacial Subarctic Pacific (54° N, 148° W): Physical Constraints and the Benthic-Planktonic Stable Isotope Record. Paleoceanography 1991, 6, 543–560. [Google Scholar] [CrossRef]
- Keigwin, L. Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 1998, 13, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Ohkushi, K.; Itaki, T.; Nemoto, N. Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific. Quat. Sci. Rev. 2003, 22, 1477–1484. [Google Scholar] [CrossRef]
- Matsumoto, K.; Oba, T.; Lynch-Stieglitz, J.; Yamamoto, H. Interior hydrography and circulation of the glacial Pacific Ocean. Quat. Sci. Rev. 2002, 21, 1693–1704. [Google Scholar] [CrossRef]
- Herguera, J.C.; Herbert, T.; Kashgarian, M.; Charles, C. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes. Quat. Sci. Rev. 2010, 29, 1228–1245. [Google Scholar] [CrossRef]
- Ahagon, N.; Ohkushi, K.; Uchida, M.; Mishima, T. Mid-depth circulation in the northwest Pacific during the last deglaciation: Evidence from foraminiferal radiocarbon ages. Geophys. Res. Lett. 2003, 30, 2097. [Google Scholar] [CrossRef]
- Harada, N.; Ahagon, N.; Uchida, M.; Murayama, M. Northward and southward migrations of frontal zones during the past 40 kyr in the Kuroshio-Oyashio transition area. Geochem. Geophys. Geosyst. 2004, 5, Q09004. [Google Scholar] [CrossRef]
- Okazaki, Y.; Timmermann, A.; Menviel, L.; Harada, N.; Abe-Ouchi, A.; Chikamoto, M.O.; Mouchet, A.; Asahi, H. Deepwater formation in the North Pacific during the Last Glacial Termination. Science 2010, 329, 200–204. [Google Scholar] [CrossRef]
- Kienast, S.; Hendy, I.; Crusius, J.; Pedersen, T.; Calvert, S. Export production in the subarctic North Pacific over the last 800 kyrs: No evidence for iron fertilization? J. Oceanogr. 2004, 60, 189–203. [Google Scholar] [CrossRef]
- Brunelle, B.G.; Sigman, D.M.; Jaccard, S.L.; Keigwin, L.D.; Plessen, B.; Schettler, G.; Cook, M.S.; Haug, G.H. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat. Sci. Rev. 2010, 29, 2579–2590. [Google Scholar] [CrossRef]
- Kiefer, T.; Kienast, M. Patterns of deglacial warming in the Pacific Ocean: A review with emphasis on the time interval of Heinrich event 1. Quat. Sci. Rev. 2005, 24, 1063–1081. [Google Scholar] [CrossRef]
- Sarnthein, M.; Kiefer, T.; Grootes, P.; Elderfield, H.; Erlenkeuser, H. Warmings in the far northwestern Pacific promoted pre-Clovis immigration to America during Heinrich event 1. Geology 2006, 34, 141–144. [Google Scholar] [CrossRef]
- Sarnthein, M.; Grootes, P.M.; Kennett, J.P.; Nadeau, M.; Schmittner, A.; Chiang, J.; Hemming, S. 14C Reservoir Ages Show Deglacial Changes in Ocean Currents and Carbon Cycle. In Ocean Circulation: Mechanisms and Impacts, AGU Geophysical Monograph Series; Schmittner, A., Chiang, J.C.H., Hemming, S.R., Eds.; American Geophysical Union: Washington, DC, USA, 2007; Volume 173, pp. 175–196. [Google Scholar]
- Chikamoto, M.O.; Menviel, L.; Abe-Ouchi, A.; Ohgaito, R.; Timmermann, A.; Okazaki, Y.; Harada, N.; Oka, A.; Mouchet, A. Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 61–64, 114–126. [Google Scholar] [CrossRef]
- Jaccard, S.L.; Galbraith, E. Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation. Geophys. Res. Lett. 2013, 40, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Jaccard, S.L.; Galbraith, E.D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 2011, 5, 151–156. [Google Scholar] [CrossRef]
- Zheng, Y.; Van Geen, A.; Anderson, R.; Gardner, J.; Dean, W. Intensification of the northeast Pacific oxygen minimum zone during the Bolling-Allerod warm period. Paleoceanography 2000, 15, 528–536. [Google Scholar] [CrossRef]
- Crusius, J.; Pedersen, T.; Kienast, S.; Keigwin, L.; Labeyrie, L. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bøling-Ållerød interval (14.7–12.9 ka). Geology 2004, 32, 633–636. [Google Scholar] [CrossRef]
- Lam, P.J.; Robinson, L.F.; Blusztajn, J.; Li, C.; Cook, M.S.; McManus, J.F.; Keigwin, L.D. Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nat. Geosci. 2013, 6, 622–626. [Google Scholar] [CrossRef]
- Rasmussen, S.; Andersen, K.; Svensson, A.; Steffensen, J.; Vinther, B.; Clausen, H.; Siggaard-Andersen, M.; Johnsen, S.; Larsen, L.; Dahl-Jensen, D.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 2006, 111, D06102. [Google Scholar] [CrossRef]
- Max, L.; Riethdorf, J.-R.; Tiedemann, R.; Smirnova, M.; Lembke-Jene, L.; Fahl, K.; Nürnberg, D.; Matul, A.; Mollenhauer, G. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years. Paleoceanography 2012, 27, PA3213. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Labeyrie, L.; Michel, E.; Duplessy, J.C.; McManus, J.F.; Lambeck, K.; Balbon, E.; Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
- Kuroyanagi, A.; Kawahata, H.; Nishi, H. Seasonal variation in the oxygen isotopic composition of different-sized planktonic foraminifer Neogloboquadrina pachyderma (sinistral) in the northwestern North Pacific and implications for reconstruction of the paleoenvironment. Paleoceanography 2011, 26. [Google Scholar] [CrossRef]
- Kuroyanagi, A.; Kawahata, H.; Nishi, H.; Honda, M.C. Seasonal to interannual changes in planktonic foraminiferal assemblages in the northwestern North Pacific: Sediment trap results encompassing a warm period related to El Nino. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 262, 107–127. [Google Scholar] [CrossRef]
- Kuroyanagi, A.; Kawahata, H.; Narita, H.; Ohkushi, K.; Aramaki, T. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific. Glob. Planet. Chang. 2006, 53, 92–107. [Google Scholar] [CrossRef]
- Kuroyanagi, A.; Kawahata, H. Vertical distribution of living planktonic foraminifera in the seas around Japan. Mar. Micropaleontol. 2004, 53, 173–196. [Google Scholar] [CrossRef]
- Bauch, D.; Erlenkeuser, H.; Winckler, G.; Pavlova, G.; Thiede, J. Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: The ‘carbonate ion effect’ under natural conditions. Mar. Micropaleontol. 2002, 45, 83–99. [Google Scholar] [CrossRef]
- Méheust, M.; Fahl, K.; Stein, R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: Reconstruction from biomarker data. Org. Geochem. 2013, 57, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Wagner, A.; Fahl, K.; Stein, R.; Prange, M.; Lohmann, G. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach. Earth Planet. Sci. Lett. 2011, 306, 137–148. [Google Scholar] [CrossRef]
- Bonnet, S.; de Vernal, A.; Gersonde, R.; Lembke-Jene, L. Modern distribution of dinocysts from the North Pacific Ocean (37–64° N, 144° E–148° W) in relation to hydrographic conditions, sea-ice and productivity. Mar. Micropaleontol. 2012, 84–85, 87–113. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Keenlyside, N.; Botzet, M.; Haak, H.; Luo, J.J.; Latif, M.; Marotzke, J.; Mikolajewicz, U.; Roeckner, E.; Jungclaus, J.H.; et al. Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM. J. Clim. 2006, 19, 3952–3972. [Google Scholar] [CrossRef] [Green Version]
- Knorr, G.; Butzin, M.; Micheels, A.; Lohmann, G. A warm Miocene climate at low atmospheric CO2 levels. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Stepanek, C.; Lohmann, G.P. Modelling mid-Pliocene climate with COSMOS. Geosci. Model Dev. 2012, 5, 1221–1243. [Google Scholar] [CrossRef] [Green Version]
- Dowsett, H.J.; Foley, K.M.; Stoll, D.K.; Chandler, M.A.; Sohl, L.E.; Bentsen, M.; Otto-Bliesner, B.L.; Bragg, F.J.; Chan, W.L.; Contoux, C.; et al. Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Sci. Rep. 2013, 3, 2013. [Google Scholar] [CrossRef]
- Kageyama, M.; Merkel, U.; Otto-Bliesner, B.; Prange, M.; Abe-Ouchi, A.; Lohmann, G.; Ohgaito, R.; Roche, D.M.; Singarayer, J.; Swingedouw, D.; et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: A multi-model study. Clim. Past 2013, 9, 935–953. [Google Scholar] [CrossRef]
- Gong, X.; Knorr, G.; Lohmann, G.P.; Zhang, X. Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states. Geophys. Res. Lett. 2013, 40, 3698–3704. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Lohmann, G. Simulated Atlantic Multidecadal Oscillation during the Holocene. J. Clim. 2012, 25, 6989–7002. [Google Scholar] [CrossRef]
- Varma, V.; Prange, M.; Merkel, U.; Kleinen, T.; Lohmann, G.P.; Pfeiffer, M.; Renssen, H.; Wagner, A.; Wagner, S.; Schulz, M. Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Clim. Past 2012, 8, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Hibler, W.D. Dynamic Thermodynamic Sea Ice Model. J. Phys. Oceanogr. 1979, 9, 815–846. [Google Scholar] [CrossRef]
- Scholz, P.; Lohmann, G.; Wang, Q.; Danilov, S. Evaluation of a Finite-Element Sea-Ice Ocean Model (FESOM) set-up to study the interannual to decadal variability in the deep-water formation rates. Ocean Dyn. 2013, 63, 347–370. [Google Scholar] [CrossRef] [Green Version]
- Hesse, T.; Butzin, M.; Bickert, T.; Lohmann, G. A model-data comparison of δ13C in the glacial Atlantic Ocean. Paleoceanography 2011, 26, PA3220. [Google Scholar] [CrossRef]
- Mikolajewicz, U.; Crowley, T.J.; Schiller, A.; Voss, R. Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 1997, 387, 384–387. [Google Scholar] [CrossRef]
- Vellinga, M.; Wood, R.A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Chang. 2002, 54, 251–267. [Google Scholar] [CrossRef]
- Dietrich, S.; Werner, M.; Spangehl, T.; Lohmann, G. Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene. Clim. Past 2013, 9, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Saenko, O.; Schmittner, A.; Weaver, A. The Atlantic-Pacific seesaw. J. Clim. 2004, 17, 2033–2038. [Google Scholar] [CrossRef]
- Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, T.F.; Zhang, R. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 2007, 22, PA3207. [Google Scholar] [CrossRef]
- Yang, X.; DelSole, T. Systematic Comparison of ENSO Teleconnection Patterns between Models and Observations. J. Clim. 2012, 25, 425–446. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohmann, G.; Lembke-Jene, L.; Tiedemann, R.; Gong, X.; Scholz, P.; Zou, J.; Shi, X. Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX). Challenges 2019, 10, 13. https://doi.org/10.3390/challe10010013
Lohmann G, Lembke-Jene L, Tiedemann R, Gong X, Scholz P, Zou J, Shi X. Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX). Challenges. 2019; 10(1):13. https://doi.org/10.3390/challe10010013
Chicago/Turabian StyleLohmann, Gerrit, Lester Lembke-Jene, Ralf Tiedemann, Xun Gong, Patrick Scholz, Jianjun Zou, and Xuefa Shi. 2019. "Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX)" Challenges 10, no. 1: 13. https://doi.org/10.3390/challe10010013
APA StyleLohmann, G., Lembke-Jene, L., Tiedemann, R., Gong, X., Scholz, P., Zou, J., & Shi, X. (2019). Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX). Challenges, 10(1), 13. https://doi.org/10.3390/challe10010013