Black Holes as Evidence of God’s Care
Abstract
:1. Introduction
2. Body: Paradoxical Nature of Black Holes
3. Supermassive Black Holes
4. Why a Universe with Black Holes?
5. Location Is Everything
6. MWG’s Exceptionally Small Supermassive Black Hole
7. All Quiet on the Black Hole Front
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ates, Alper K., Can Battal Kılınç, and Cafer Ibanoglu. 2013. On the M-σ Relationship and SMBH Mass Estimates of Selected Nearby Galaxies. International Journal of Astronomy and Astrophysics, 1–9. [Google Scholar] [CrossRef]
- Barrow, John D., and Frank J. Tipler. 1986. The Anthropic Cosmological Principle. New York: Oxford University Press. [Google Scholar]
- Beaton, Rachael L., Steven R. Majewski, Puragra Guhathakurta, Michael F. Skrutskie, Roc M. Cutri, John Good, Richard J. Patterson, E. Athanassoula, and Martin Bureau. 2007. Unveiling the Boxy Bulge and Bar of the Andromeda Spiral Galaxy. Astrophysical Journal Letters 658: L91–L94. [Google Scholar] [CrossRef] [Green Version]
- Behroozi, Peter S., Risa H. Wechsler, and Charles Conroy. 2013. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0–8. Astrophysical Journal 770: 57. [Google Scholar] [CrossRef] [Green Version]
- Bender, Ralf, John Kormendy, Gary Bower, Richard Green, Jens Thomas, Anthony C. Danks, and Theodore Gull. 2005. HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole. Astrophysical Journal 631: 280–300. [Google Scholar] [CrossRef] [Green Version]
- Berrier, Joel C., Benjamin L. Davis, Daniel Kennefick, Julia D. Kennefick, Marc S. Seigar, Robert Scott Barrows, Matthew Hartley, Doug Shields, Misty C. Bentz, and Claud HS Lacy. 2013. Further Evidence for a Supermassive Black Hole-Pitch Angle Relation. Astrophysical Journal 769: 132. [Google Scholar] [CrossRef] [Green Version]
- Bird, D. John, S. C. Corbato, H. Y. Dai, J. W. Elbert, K. D. Green, M. A. Huang, and D. B. Kieda. 1995. Detection of a Cosmic Ray with Measured Energy Well beyond the Expected Spectral Cutoff Due to Cosmic Microwave Radiation. Astrophysical Journal 441: 144–50. [Google Scholar] [CrossRef] [Green Version]
- Block, David L., F. Bournaud, F. Combes, R. Groess, P. Barmby, M. L. N. Ashby, G. G. Fazio, M. A. Pahre, and S. P. Willner. 2006. An Almost Head-On Collision as the Origin of Two Off-Centre Rings in the Andromeda Galaxy. Nature 443: 832–34. [Google Scholar] [CrossRef] [PubMed]
- Caglar, Turgay, Leonard Burtscher, Bernhard Brandl, Jarle Brinchmann, Richard I. Davies, Erin KS Hicks, and Michael Koss. 2020. LLAMA: The MBH–σ* Relation of the Most Luminous Local AGNs. Astronomy and Astrophysics 634: A114. [Google Scholar] [CrossRef] [Green Version]
- Chornock, R., E. Berger, D. Kasen, P. S. Cowperthwaite, M. Nicholl, V. A. Villar, and K. D. Alexander. 2017. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-Infrared Signatures of r-Process Nucleosynthesis with Gemini-South. Astrophysical Journal Letters 848: L19. [Google Scholar] [CrossRef] [Green Version]
- Corrales, Lia, Brayden Mon, Daryl Haggard, Frederick K. Baganoff, Gordon Garmire, Nathalie Degenaar, and Mark Reynolds. 2017. Perils at the Heart of the Milky Way: Systematic Effects for Studying Low Luminosity Accretion onto Sgr A*. HEAD Meeting #16, id. 300.01. Washington: American Astronomical Society. [Google Scholar]
- Craig, William Lane. 1988. Barrow and Tipler on the Anthropic Principle vs. Divine Design. British Journal for the Philosophy of Science 38: 389–95. [Google Scholar] [CrossRef]
- Davies, Paul. 1988. The Cosmic Blueprint. New York: Simon & Schuster. [Google Scholar]
- Davies, Paul. 2007. The Cosmic Jackpot: Why Our Universe Is Just Right for Life. Boston: Houghton Mifflin Harcourt. [Google Scholar]
- Davoudiasi, Hoorman, and Peter B. Denton. 2019. Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Physical Review Letters 123: 021102. [Google Scholar] [CrossRef] [Green Version]
- De Nicola, Stefano, Alessandro Marconi, and Giuseppe Longo. 2019. The Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Monthly Notices of the Royal Astronomical Society 490: 600–12. [Google Scholar] [CrossRef]
- Deason, Alis J., Andrew R. Wetzel, Shea Garrison-Kimmel, and Vasily Belokurov. 2015. Satellites of LMC-Mass Dwarfs: Close Friendships Ruined by Milky Way Mass Haloes. Monthly Notices of the Royal Astronomical Society 453: 3568–74. [Google Scholar] [CrossRef]
- Di Matteo, Tiziana, Steven W. Allen, Andrew C. Fabian, Andrew S. Wilson, and Andrew J. Young. 2003. Accretion onto the Supermassive Black Hole in M87. Astrophysical Journal 582: 133–40. [Google Scholar] [CrossRef]
- Do, Tuan, Shelley A. Wright, Aaron J. Barth, Elizabeth J. Barton, Luc Simard, James E. Larkin, Anna M. Moore, Lianqi Wang, and Brent Ellerbroek. 2014. Prospects for Measuring Supermassive Black Hole Masses with Future Extremely Large Telescopes. Astronomical Journal 147: 93. [Google Scholar] [CrossRef]
- Duncan, Megan S., and Rajdeep Dasgupta. 2017. Rise of Earth’s Atmospheric Oxygen Controlled by Efficient Subduction of Organic Carbon. Nature Geoscience 10: 387–92. [Google Scholar] [CrossRef]
- Egan, Chas A., and Charles H. Lineweaver. 2010. A Larger Estimate of the Entropy of the Universe. Astrophysical Journal 10: 1825–34. [Google Scholar] [CrossRef] [Green Version]
- Emsley, John. 1998. The Elements, 3rd ed. Oxford: Clarendon Press, pp. 26, 40, 56, 58, 60, 62, 78, 102, 106, 120, 122, 130, 138, 152, 160, 188, 194, 198, 214, 222, 230. [Google Scholar]
- Erkal, Denis, Douglas Boubert, Alessia Gualandris, N. Wyn Evans, and Fabio Antonini. 2019. A Hypervelocity Star with a Magellanic Origin. Monthly Notices of the Royal Astronomical Society 483: 2007–13. [Google Scholar] [CrossRef] [Green Version]
- Event Horizon Telescope Collaboration. 2019. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters 875: L6. [Google Scholar] [CrossRef]
- Gebhardt, Karl, Tod R. Lauer, John Kormendy, Jason Pinkney, Gary A. Bower, Richard Green, and Theodore Gull. 2001. M33: A Galaxy with No Supermassive Black Hole. Astronomical Journal 122: 2469–76. [Google Scholar] [CrossRef] [Green Version]
- González-Lópezlira, Rosa A., Luis Lomelí-Núñez, Karla Álamo-Martínez, Yasna Ordenes-Briceno, Laurent Loinard, Iskren Y. Georgiev, Roberto P. Munoz, Thomas H. Puzia, Gustavo Bruzual, and Stephen Gwyn. 2017. The Relation between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGC 4258. Astrophysical Journal 835: 184. [Google Scholar] [CrossRef] [Green Version]
- Gualandris, Alessia, and Simon Portegies Zwart. 2007. A Hypervelocity Star from the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society: Letters 376: L29–L33. [Google Scholar] [CrossRef]
- Gültekin, Kayhan, Douglas O. Richstone, Karl Gebhardt, Tod R. Lauer, Scott Tremaine, Monique C. Aller, and Ralf Bender. 2009. The M–σ and M–L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophysical Journal 698: 198–221. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, Francisco. S., and Jesús M. Rueda-Becerril. 2009. Spherical Boson Stars as Black Hole Mimickers. Physical Review D 80: 084023. [Google Scholar] [CrossRef] [Green Version]
- Hada, Kazuhiro, M. Goroletti, M. Kino, G. Giovannini, F. D. D’Ammando, C. C. Cheung, M. Beilicke, H. Nagai, A. Doi, K. Akiyama, and et al. 2014. A strong radio brightening at the jet base of M 87 during the elevated very high energy gamma-ray state in 2012. Astrophysical Journal 788: 165. [Google Scholar] [CrossRef] [Green Version]
- Harris, Gretchen L. H., Gregory B. Poole, and William E. Harris. 2014. Globular Clusters and Supermassive Black Holes in Galaxies: Further Analysis and a Larger Sample. Monthly Notices of the Royal Astronomical Society 438: 2117–30. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, Markus, Victor P. Debattista, David R. Cole, Monica Valluri, Lawrence M. Widrow, and Juntai Shen. 2014. The Effect of Bars on the M.–σe Relation: Offset, Scatter and Residuals Correlations. Monthly Notices of the Royal Astronomical Society 441: 1243–59. [Google Scholar] [CrossRef] [Green Version]
- Heger, Alexander, Christopher L. Fryer, Stan E. Woosley, Norbert Langer, and Dieter H. Hartmann. 2003. How Massive Single Stars End Their Life. Astrophysical Journal 591: 288–300. [Google Scholar] [CrossRef] [Green Version]
- Indu, Gopalakrishnan, and Annapurni Subramaniam. 2015. H I Kinematics of the Large Magellanic Cloud Revisited: Evidence of Possible Infall and Outflow. Astronomy & Astrophysics 573: A136. [Google Scholar] [CrossRef] [Green Version]
- Johnson, Jennifer. 2017. Origin of the Elements in the Solar System. Available online: https://blog.sdss.org/2017/01/09/origin-of-the-elements-in-the-solar-system/ (accessed on 12 March 2021).
- Kim, Suk, Soo-Chang Rey, Martin Bureau, Hyein Yoon, Aeree Chung, Helmut Jerjen, and Thorsten Lisker. 2016. Large Scale Filamentary Structures around the Virgo Cluster Revisited. Astrophysical Journal 833: 207. [Google Scholar] [CrossRef] [Green Version]
- Kim, Jihyun, Dongsu Ryu, Hyesung Kang, Suk Kim, and Soo-Chang Rey. 2019. Filaments of Galaxies as a Clue to the Origin of Ultrahigh-Energy Cosmic Rays. Science Advances 5: eaau8227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, Andrew, and Rebecca Nealon. 2019. Supermassive Black Hole Demographics: Evading M − σ. Monthly Notices of the Royal Astronomical Society 487: 4827–31. [Google Scholar] [CrossRef]
- Kormendy, John, and Luis C. Ho. 2013. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annual Review of Astronomy and Astrophysics 51: 511–653. [Google Scholar] [CrossRef] [Green Version]
- Laporte, Chervin F. P., Facundo A. Gómez, Gurtina Besla, Kathryn V. Johnston, and Nicolas Garavito-Camargo. 2018. Response of the Milky Way’s Disc to the Large Magellanic Cloud in a First Infall Scenario. Monthly Notices of the Royal Astronomical Society 473: 1218–30. [Google Scholar] [CrossRef] [Green Version]
- Leach, Mark R. 2020. The Chemogenesis Web Book: The Internet Database of Periodic Tables. Available online: https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id.593 (accessed on 12 March 2021).
- Levinson, Amir, and Frank Rieger. 2011. Variable TeeV Emission as a Manifestation of Jet Formation in M87? Astrophysical Journal 730: 123. [Google Scholar] [CrossRef] [Green Version]
- Li, Zhiyuan, Michael R. Garcia, William R. Forman, Christine Jones, Ralph P. Kraft, Dharam V. Lal, Stephen S. Murray, and Q. Daniel Wang. 2011. The Murmur of the Hidden Monster: Chandra’s Decadal View of the Supermassive Black Hole in M31. Astrophysical Journal Letters 728: L10. [Google Scholar] [CrossRef] [Green Version]
- Linsley, John. 1963. Evidence for a Primary Cosmic-Ray Particle with Energy 1020 eV. Physical Review Letters 10: 146–68. [Google Scholar] [CrossRef]
- Loewenstein, M., K. Hayashida, T. Toneri, and D. S. Davis. 1998. On the Nature of the X-Ray Emission from M32. Astrophysical Journal 497: 681–88. [Google Scholar] [CrossRef]
- Lucchini, Scott, Elena D’Onghia, Andrew J. Fox, Chad Bustard, Joss Bland-Hawthorn, and Ellen Zweibel. 2021. The Magellanic Corona as the Key to the Formation of the Magellanic Stream. Bulletin of the American Astronomical Society 53: 2021ni434p06. [Google Scholar]
- Marconi, Alessandro, and Leslie K. Hunt. 2003. The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity. Astrophysical Journal Letters 589: L21–L24. [Google Scholar] [CrossRef] [Green Version]
- Marsden, Christopher, Francesco Shankar, Mitchele Ginolfi, and Kastytis Zubovas. 2020. The Case for the Fundamental MBH–σ Relation. Frontiers in Physics 8: 61. [Google Scholar] [CrossRef]
- McClintock, Jeffrey E., and Ronald A. Remillard. 2004. Black Hole Binaries, Chapter 4 in Compact Stellar X-ray Sources. Edited by W. H. G. Lewin and M. van der Klis. Cambridge: Cambridge University Press, vol. 157, pp. 10–11. Available online: https://arxiv.org/pdf/astro-ph/0306213.pdf (accessed on 12 March 2021).
- McConnell, Nicholas J. 2011. Two Ten-Billion-Solar Mass Black Holes at the Centres of Giant Elliptical Galaxies. Nature 480: 215–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merritt, David, Laura Ferrarese, and Charles L. Joseph. 2001. No Supermassive Black Hole in M33? Science 293: 1116–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielke, Eckehard W., and Franz E. Shunck. 2002. Boson and Axion Stars. The Ninth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories. Paper presented at MGIX MM Meeting, University of Rome, Rome, Italy, July 2–8; Edited by Vahe G. Gurzadyan, Robert T. Jantzen and Remo Ruffini. Singapore: World Scientific, pp. 581–91. [Google Scholar] [CrossRef]
- Miki, Yohei, Masao Mori, Toshihiro Kawaguchi, and Yuriko Saito. 2014. Hunting a Wandering Supermassive Black Hole in the M31 Halo Hermitage. Astrophysical Journal 783: 87. [Google Scholar] [CrossRef] [Green Version]
- Mutlu-Pakdil, Burçin, Marc S. Seigar, and Benjamin L. Davis. 2016. The Local Black Hole Mass Function Derived from the MBH-P and the MBH-n Relations. Astrophysical Journal 830: 117. [Google Scholar] [CrossRef] [Green Version]
- Nayakshin, Sergei, Chris Power, and Andrew R. King. 2012a. The Observed M–σ Relations Imply that Super-Massive Black Holes Grow by Cold Chaotic Accretion. Astrophysical Journal 753: 15. [Google Scholar] [CrossRef] [Green Version]
- Nayakshin, Sergei, Sergey Sazonov, and Rashid Sunyaev. 2012b. Are Supermassive Black Holes Shrouded by ‘Super-Oort’ Clouds of Comets and Asteroids? Monthly Notices of the Royal Astronomical Society 419: 1238–47. [Google Scholar] [CrossRef] [Green Version]
- Neronov, Andrii, and Felix A. Aharonian. 2007. Production of TeV Gamma Radiation in the Vicinity of the Supermassive Black Hole in the Giant Radio Galaxy M87. Astrophysical Journal 671: 85–96. [Google Scholar] [CrossRef] [Green Version]
- Oakes, John. 2013. Why Did God Create Black Holes? Evidence for Christianity. Available online: https://evidenceforchristianity.org/why-did-god-create-black-holes/ (accessed on 12 March 2021).
- Pace, Norman R. 2001. The Universal Nature of Biochemistry. Proceedings of the National Academy of Sciences USA 98: 805–8. [Google Scholar] [CrossRef] [Green Version]
- Pardy, Stephen A, Elena D’Onghia, and Andrew J. Fox. 2018. Models of Tidally Induced Gas Filaments in the Magellanic Stream. Astrophysical Journal 857: 101. [Google Scholar] [CrossRef] [Green Version]
- Peñarrubia, Jorge, Facundo A. Gómez, Gurtina Besla, Denis Erkal, and Yin-Zhe Ma. 2016. A Timing Constraint on the (Total) Mass of the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society: Letters 456: L54–L58. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. 2017. Observation of a Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays above 8 × 1018 eV. Science 357: 1266–70. [Google Scholar] [CrossRef] [Green Version]
- Pierre Auger Collaboration. 2018. Large-Scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory. Astrophysical Journal 868: 4. [Google Scholar] [CrossRef]
- Rhode, Katherine L. 2012. Exploring the Correlations between Globular Cluster Populations and Supermassive Black Holes in Giant Galaxies. Astronomical Journal 144: 154. [Google Scholar] [CrossRef]
- Ross, Hugh. 2008a. Why the Universe Is the Way It Is. Grand Rapids: Baker Books, pp. 153–63. [Google Scholar]
- Ross, Hugh. 2008b. Why the Universe Is the Way It Is. Grand Rapids: Baker Books. [Google Scholar]
- Ross, Hugh. 2016. Improbable Planet: How Earth Became Humanity’s Home. Grand Rapids: Baker Books. [Google Scholar]
- Ross, Hugh. 2018a. The Creator and the Cosmos: How the Latest Scientific Discoveries Reveal God, 4th ed. Covina: RTB Press, vol. 141157, pp. 181–87. [Google Scholar]
- Ross, Hugh. 2018b. The Creator and the Cosmos, 4th ed. Covina: RTB Press. [Google Scholar]
- Ross, Hugh. 2020. Deep Oxygen Cycle Provides Evidence for Creation of Animals. Today’s New Reason to Believe. Available online: https://reasons.org/explore/blogs/todays-new-reason-to-believe/read/todays-new-reason-to-believe/2020/10/12/deep-oxygen-cycle-provides-evidence-for-creation-of-animals (accessed on 12 March 2021).
- Sahu, Nandini, Alister W. Graham, and Benjamin L. Davis. 2019. Revealing Hidden Substructures in the MBH–σ Diagram, and Refining the Bend in the L–σ Relation. Astrophysical Journal 887: 10. [Google Scholar] [CrossRef] [Green Version]
- Seigar, Marc S., Daniel Kennefick, Julia Kennefick, and Claud H. S. Lacy. 2008. Discovery of a Relationship between Spiral Arm Morphology and Supermassive Black Hole Mass in Disk Galaxies. Astrophysical Journal Letters 678: L93–L96. [Google Scholar] [CrossRef]
- Seth, Anil C., Michele Cappellari, Nadine Neumayer, Nelson Caldwell, Nate Bastian, Knut Olsen, and Robert D. Blum. 2010. The NGC 404 Nucleus: Star Cluster and Possible Intermediate-Mass Black Hole. Astrophysical Journal 714: 713–31. [Google Scholar] [CrossRef] [Green Version]
- Shankar, Francesco, David H. Weinberg, Christopher Marsden, Philip J. Grylls, Mariangela Bernardi, Guang Yang, and Benjamin Moster. 2020. Probing Black Hole Accretion Tracks, Scaling Relations, and Radiative Efficiencies from Stacked X-Ray Active Galactic Nuclei. Monthly Notices of the Royal Astronomical Society 493: 1500–11. [Google Scholar] [CrossRef] [Green Version]
- Stepanek, Joel. 2019. Do Black Holes Disprove the Existence of God? Life Teen. Available online: https://www.youtube.com/watch?v=BfhT-BqJ2KA&t=182s (accessed on 12 March 2021).
- Swinburne, Richard. 1990. Argument from the Fine-Tuning of the Universe. In Physical Cosmology and Philosophy. Edited by John Leslie. New York: Macmillan, p. 165. [Google Scholar]
- Tanvir, Nial R., A. J. Levan, C. González-Fernández, O. Korobkin, Ilya Mandel, Stephan Rosswog, and Jens Hjorth. 2017. The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars. Astrophysical Journal Letters 848: L27. [Google Scholar] [CrossRef]
- The Gravity Collaboration. 2019. A Geometric Distance Measurement to the Galactic Center Black Hole with 0.3% Uncertainty. Astronomy and Astrophysics: Letters 625: L10. [Google Scholar] [CrossRef] [Green Version]
- Thomas, Jens, Chung-Pei Ma, Nicholas J. McConnell, Jenny E. Greene, John P. Blakeslee, and Ryan Janish. 2016. A 17-Billion-Solar-Mass Black Hole in a Group Galaxy with a Diffuse Core. Nature 532: 340–42. [Google Scholar] [CrossRef] [PubMed]
- Thorne, Kip S. 2000. Probing Black Holes and Relativistic Stars with Gravitational Waves. Paper presented at Black Holes and the Structure of the Universe, Chile and Antarctica, Santiago, Chile, August 18–20; Edited by Claudio Teitelboim and Jorge Zanelli. Singapore: World Scientific, pp. 81–118. [Google Scholar] [CrossRef] [Green Version]
- Torres, Diego F., Capozziello S., and Lambiase G. 2000. Supermassive Boson Star at the Galactic Center? Physical Review D 62: 104012. [Google Scholar] [CrossRef]
- Valluri, Monica, Laura Ferrarese, David Merritt, and Charles L. Joseph. 2005. The Low End of the Supermassive Black Hole Mass Function: Constraining the Mass of a Nuclear Black Hole in NGC 205 via Stellar Kinematics. Astrophysical Journal 628: 137–52. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, Eugene, Vasily Belokurov, and Denis Erkal. 2021. Tango for Three: Sagittarius, LMC, and the Milky Way. Monthly Notices of the Royal Astronomical Society 501: 2279–304. [Google Scholar] [CrossRef]
- Waltham, Dave. 2004. Anthropic Selection for the Moon’s Mass. Astrobiology 4: 460–68. [Google Scholar] [CrossRef] [PubMed]
- Watabe, Yasuyuki, Nozomu Kawakatu, Masatoshi Imanishi, and Tsutomu T. Takeuchi. 2009. Supermassive Black Hole Mass Regulated by Host Galaxy Morphology. Monthly Notices of the Royal Astronomical Society 400: 1803–7. [Google Scholar] [CrossRef] [Green Version]
- Yang, Guang, W. N. Brandt, D. M. Alexander, C. T. J. Chen, Q. Ni, F. Vito, and F. F. Zhu. 2019. Evident Black Hole-Bulge Coevolution in the Distant Universe. Monthly Notices of the Royal Astronomical Society 485: 3721–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Dali, Yu Luo, and Xi Kang. 2019. The Effect of the Large Magellanic Cloud on the Satellite Galaxy Population in Milky Way Analogous Galaxies. Monthly Notices of the Royal Astronomical Society 486: 2440–48. [Google Scholar] [CrossRef]
- Zubovas, Kastytis, and Andrew R. King. 2012. The M–σ Relation in Different Environments. Monthly Notices of the Royal Astronomical Society 426: 2751–57. [Google Scholar] [CrossRef] [Green Version]
- Zubovas, Kastytis, Sergei Nayakshin, and Sera Markoff. 2012. Sgr A* Flares: Tidal Disruption of Asteroids and Planets? Monthly Notices of the Royal Astronomical Society 421: 1315–24. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ross, H. Black Holes as Evidence of God’s Care. Religions 2021, 12, 201. https://doi.org/10.3390/rel12030201
Ross H. Black Holes as Evidence of God’s Care. Religions. 2021; 12(3):201. https://doi.org/10.3390/rel12030201
Chicago/Turabian StyleRoss, Hugh. 2021. "Black Holes as Evidence of God’s Care" Religions 12, no. 3: 201. https://doi.org/10.3390/rel12030201