Evaluation of Groundwater in the Coastal Portion of Guasave, Sinaloa for White Shrimp Farming (Penaeus vannamei) through VES, Chemical Composition, and Survival Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Groundwater Sampling
2.3. Vertical Electrical Soundings
2.4. Selection of Sites for Aquaculture Farming
2.5. Forty Eight Hours Survival Evaluation Test of P. vannamei Test
2.5.1. Forty Eight Hours Survival with Groundwater
2.5.2. Forty Eight Hours Survival with Addition of Salts to Groundwater
2.6. Statistic Analysis
3. Results
3.1. Aquifer Structure, Rw and Ro Relation
3.2. Analysis of Collected Groundwater Samples
3.3. Correlation Matrix Matrix of Physicochemical Parameters
3.4. Ion Concentration Versus Total Salinity of Diluted Seawater
3.5. Bioassays
3.5.1. Bioassay 1 (48 h)
3.5.2. Bioassay 2 (Addition of Salts)
4. Discussion
4.1. Variations of EC and Its Relation to Various Ions
4.2. Application of Ro–Rw and Rw–Ion Concentration Relationships
4.3. P. vannamei Survival Bioassay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez Torres, P.; Soto, F.; Aviles Quevedo, S.; Díaz Luna, C.; Treviño Carrillo, L.M. Panorama de la investigación y su repercusión sobre la produccion acuicola en Mexico. Av. Nutr. Acuicola III 1996, 3, 1–18. [Google Scholar]
- Oldepesca, La Acuícultura y Sus Desafíos. LA Acuicultura y sus Desafíos; Organización Latinoamericana de Desarrollo Pesquero: Mexico City, DF, Mexico, 2009; pp. 1–26. [Google Scholar]
- SAGARPA, Carta Nacional Acuícola. 2012. Available online: http://www.sagarpa.gob.mx/saladeprensa/2012/Paginas/2013B536.aspx (accessed on 11 December 2017).
- Food and Agriculture Organization. El Estado Mundial de la Pesca y Acuicultura Organización de las Naciones Unidad para la Alimnetación y la Agricultura; FAO: Roma, Italy, 2016; p. 224. [Google Scholar]
- Valencia Castañeda, G.; Millán Almaraz, M.I.; Fierro Sañudo, J.F.; Fregos López, M.G.; Páez Osuna, F. Monitoring of inland waters for culturing shrimp Litopenaeus vannamei: Application of a method based on survival and chemical composition. Environ. Monit. Assess. 2017, 189, 395. [Google Scholar] [CrossRef]
- Sosa Villalobos, C.; Castaneda Chavez, M.; Amaro Espejo, I.; Galaviz Villa, I.; Lango Reynoso, F. Diagnosis of the current state of aquaculture production systems with regard to the environment in Mexico. Lat. Am. J. Aquat. Res. 2016, 44, 193–201. [Google Scholar] [CrossRef]
- De Silva, S.S.; Nguyen, T.T.; Abery, N.W.; Amarasinghe, U.S. An evaluation of the role and impacts of alien finfish in Asian inland aquaculture. Aquac. Res. 2006, 37, 1–17. [Google Scholar] [CrossRef]
- Valenzuela Quiñonez, W.; Rodrígues Quiroz, G.; Esparza Leal, H.M. Cultivo intensivo de camarón blanco Litopenaeus vannamei (boone) en agua de pozo de baja salinidad como alternativa acuícola para zonas de alta marginación. Ximhai Rev. Soc. Cult. Desarro. Sustentable 2010, 6, 1–8. [Google Scholar]
- Summerfelt, R.C. Water Quality Considerations for Aquaculture. Aquac. Netw. Inf. Cent. 1998, 50, 11–21. [Google Scholar]
- Valenzuela, M.; Suárez, J.; Sánchez, A.; Rosas, C. Cultivo de camarón blanco del golfo Litopenaeus setiferus en estanques de manto freático. In Proceedings of the II Congreso Nacional de la Asociación Mexicana de Limnología, Mexico City, DF, Mexico, 23–25 October 2002; pp. 1–9. [Google Scholar]
- Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; VanderSteen, J. Towards Sustainable Groundwater Use: Setting Long-Term Goals, Backcasting, and Managing Adaptively. Ground Water 2012, 50, 19–26. [Google Scholar] [CrossRef]
- Chávez Sánchez, M.C.; Montoya Rodríguez, L. Buenas Prácticas y Medidas de Bioseguridad en Granjas Camaronícolas; Centro de Investigación en Alimentación y Desarrollo: Mazatlán, Sinaloa, Mexico, 2006; p. 95. [Google Scholar]
- Jang, C.S.; Chen, C.F.; Liang, C.P.; Chen, J.S. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. J. Hydrol. 2016, 533, 541–556. [Google Scholar] [CrossRef]
- Cuéllar, J.; Lara, C.; Morales, V.; De Gracia, A.; García, O. Manual de Buenas Prácticas de Manejo para el Cultivo del Camarón Blanco Penaeus Vannamei; OIRSA-OSPESCA: Merida, Yucatán, Mexico, 2010; p. 132. ISBN 978-9962-661-05-4. [Google Scholar]
- Conagua, Manual de Agua Potable, Alcantarillado y Saneamiento. Prospección Geoeléctrica y Registros Geofisicos de Pozos; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, DF, Mexico, 2007; p. 204. ISBN 978-968-817-880-5.
- Muchingami, I.; Hlatywayo, D.J.; Nel, J.M.; Chuma, C. Electrical resistivity survey for groundwater investigations and shallow subsurface evaluation of the basaltic-greenstone formation of the urban Bulawayo aquifer. Phys. Chem. Earth 2012, 50–52, 44–51. [Google Scholar] [CrossRef]
- Urish, D.W.; Frohlich, R.K. Surface electrical resistivity in coastal groundwater exploration. Geoexploration 1990, 26, 267–289. [Google Scholar] [CrossRef]
- Frohlich, R.K.; Urish, D.W.; Fuller, J.; O’Reilly, M. Use of geoelectrical methods in groundwater pollution surveys in a coastal environment. J. Appl. Geophys. 1994, 32, 139–154. [Google Scholar] [CrossRef]
- Worthington, F. Hydrogeophysical equivalence of water salinity, porosity and matrix conduction in arenaceous aquifers. Ground Water 1976, 14, 224–232. [Google Scholar] [CrossRef]
- Ladrón de Guevara-Torres, M.L.; Peinado-Guevara, H.J.; Delgado-Rodríguez, O.; Shevnin, V.; Herrera-Barrientos, J.; Belmonte-Jiménez, S.I.; Peinado-Guevara, V.M. Geoelectrical and geochemical characterization of groundwater in a shallow coastal aquifer. Polish J. Environ. Stud. 2017, 26, 1511–1519. [Google Scholar] [CrossRef]
- Peinado-Guevara, H.J.; Delgado-Rodríguez, O.; Herrera-Barrientos, J.; Ladrón de Guevara, M.D.L.A.; Peinado-Guevara, V.M.; Herrera-Barrientos, F.; Campista Leon, S. Determining water salinity in a shallow aquifer and its vulnerability to coastline erosion. Polish J. Environ. Stud. 2017, 26, 2001–2011. [Google Scholar] [CrossRef]
- Orellana, E. Prospección Geoeléctrica en Corriente Continua; Paraninfo: Madrid, Spain, 1982; p. 578. [Google Scholar]
- CNA. Lineamientos para el Otorgamiento de Concesiones o Asignaciones de Agua Subterránea salada Proveniente de Captaciones Ubicadas en la Proximidad del Litoral. D. Of. la Fed. 2017. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5482204&fecha=11/05/2017 (accessed on 20 December 2020).
- Peinado-guevara, H.J.; Herrera-barrientos, J.; Ladron-de-Guevara, M.A. Determinación de la conductividad hidráulica mediante medidas de resistividad eléctrica. Ing. Hidraul. Mex. 2009, 24, 123–134. [Google Scholar]
- Conagua. Actualización de la Disponibilidad Media Anual Agua en el Acuífero río Sinaloa (2502); Secretariat of the Interior: Mexico City, DF, Mexico, 2020; pp. 2–29.
- INEGI. Anuario Estadístico y Geográfico de Sinaloa; Instituto Nacional Estadística Geografia: Aguascalientes City, Aguascalientes, Mexico, 2017; p. 475. [Google Scholar]
- Van Wyk, P.; Scarpa, J. Water quality requirements and management in farming marine shrimp in recirculating freshwater systems. In Farming Marine Shrimp in Recirculating Freshwater Systems; Harbor Branch Oceanographic Institution, Florida Atlantic University: Boca Raton, FL, USA, 1999; pp. 141–161. [Google Scholar]
- Li, E.; Chen, L.; Zeng, C.; Chen, X.; Yu, N.; Lai, Q.; Qin, J.G. Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture 2007, 265, 385–390. [Google Scholar] [CrossRef]
- Gross, A.; Abutbul, S.; Zilberg, D. Acute and Chronic Effects of Nitrite on White Shrimp, Litopenaeus vannamei, Cultured in Low-Salinity Brackish Water. J. World Aquac. Soc. 2004, 35, 7. [Google Scholar] [CrossRef]
- Boyd, C.E. Trace Metals Toxic at High Concentrations. Goblal Aquac. Adv. 2009, 24–26. Available online: https://www.aquaculturealliance.org/advocate/trace-metals-toxic-at-high-concentrations/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA (accessed on 17 April 2019).
- Boyd, C.E.; Thunjai, T. Concentrations of major ions in waters of inland shrimp farms in China, Ecuador, Thailand, and the United States. J. World Aquac. Soc. 2003, 34, 524–532. [Google Scholar] [CrossRef]
- Daniel, W.W. Bioestadística; Limusa Wiley: Mexico City, DF, Mexico, 2002; pp. 335–337. ISBN 968-18-0178-4. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson: London, UK, 2010; pp. 291–300. ISBN 978-0-13-100846-5. [Google Scholar]
- Roy, L.A.; Davis, D.A.; Saoud, I.P.; Boyd, C.A.; Pine, H.J.; Boyd, C.E. Shrimp culture in inland low salinity waters. Rev. Aquac. 2010, 2, 191–208. [Google Scholar] [CrossRef]
- Heath, R.C. Basic Ground-Water Hydrology; U.S. Geological Survey: Reston, VA, USA, 1983; p. 86. ISBN 0-607-68973-0.
- Chidambaram, S.; Senthil Kumar, G.; Prasanna, M.V.; John Peter, A.; Ramanthan, A.; Srinivasamoorthy, K. A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environ. Geol. 2009, 57, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Peinado Guevara, H.; Green-Ruíz, C.; Herrera-Barrientos, J.; Escolero-Fuentes, O.; Delgado-Rodríguez, O.; Belmonte-Jiménez, S.; Ladrón de Guevara, M. Relationship between chloride concentration and electrical conductivity in groundwater and its estimation from vertical electrical soundings (VESs) in Guasave, Sinaloa, Mexico. Cienc. e Investig. Agrar. 2012, 39, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Shroff, P.; Vashi, R.T.; Champaneri, V.A.; Patel, K.K. Correlation study among water quality parameters of groundwater of valsad district of south gujarat (India). J. Fundam. Appl. Sci. 2015, 7, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Bhasin, S.K.; Singh, A.; Kaushal, J. Statistical Analysis of Water Falling Into Western Yamuna Canal From Yamunanagar Industrial Belt and Its Effect on Agriculture. J. Environ. Res. Dev. 2008, 2, 393–401. [Google Scholar]
- Abyaneh, H.Z.; Nazemi, A.H.; Neyshabori, M.R.; Mohammadi, K.; Majzoobi, G.H. Chloride estimation in Ground water from electrical conductivity measurement. Tarim Bilim. Derg. 2005, 11, 110–114. [Google Scholar]
- Saoud, I.P.; Davis, D.A.; Rouse, D.B. Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture 2003, 217, 373–383. [Google Scholar] [CrossRef]
- Rodríguez Meza, D.; Sapozhnikov, D.; Vargas-Ramírez, C.; Vallejo Soto, A.; Verdugo-Quiñonez, G.; Michel-Rubio, A. Monitoreo de la Calidad del agua del Acuífero de Guasave, Sinaloa. 2008. Available online: http://sappi.ipn.mx/cgpi/archivos_anexo/20080587_6101.pdf (accessed on 10 January 2021).
- Mastrocicco, M.; Giambastiani, B.M.S.; Colombani, N. Ammonium occurrence in a salinized lowland coastal aquifer (Ferrara, Italy). Hydrol. Process. 2013, 27, 3495–3501. [Google Scholar] [CrossRef]
- Peinado-Guevara, H.J.; Green-Ruiz, C.R.; Herrera-Barrientos, J.; Escolero-Fuentes, O.A.; Delgado-Rodríguez, O.; Belmonte-Jiménez, S.I.; Ladrón de Guevara, M.Á. Quality and suitability of the agricultural and domestic water use of the Sinaloa river aquifer, coastal zone. Hidrobiologica 2011, 21, 63–76. [Google Scholar]
- Archie, G.E. The electrical resistivity logs as an aid in determining some reservoir characteristics. SPE-AIME Trans. 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Llanes Cárdenas, O.; Norzagaray Campos, M.; Muñoz Sevilla, P.; Ruiz Guerrero, R. Agua subterránea: Alternativa acuícola en el Noroeste de Mexico. Aquat. Rev. electrónica Acuic. 2013, 38, 10–20. [Google Scholar]
- Mariscal Lagarda, M.M.; Páez Osuna, F.; Esquer Méndez, J.L.; Guerrero Monroy, I.; del Vivar, A.R.; FélixGastelum, R. Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture 2012, 366–367, 76–84. [Google Scholar] [CrossRef]
- Baldi, F.; Rosas, J.; Velásquez, A.; Cabrea, T.; Maneiro, C. Aclimatación a baja salinidad de postlarvas del camarón marino Litopenaeus vannamei (Bonne, 1931) provenientes de dos criaderos comerciales. Rev. Biol. Mar. Oceanogr. 2005, 40, 105–109. [Google Scholar]
- Mcgraw, W.J.; Davis, D.A.; Teichert-Coddington, D.B.; Rouse, D.B. Acclimation of Litopenaeus vannamei Postlarvae to Low Salinity: Influence of Age, Salinity Endpoint, and Rate of Salinity Reduction. J. World Aquac. Soc. 2002, 33, 78–84. [Google Scholar] [CrossRef]
- Laramore, S.; Laramore, C.R.; Scarpa, J. Effect of Low Salinity on Growth and Survival of Postlarvae and Juvenile Litopenaeus vannamei. J. World Aquac. Soc. 2001, 32, 385–392. [Google Scholar] [CrossRef]
Parameter | Method | Range (mg/L) | Wavelength | Accuracy | Resolution (mg/L) |
---|---|---|---|---|---|
Manganese | Standard methods for the examination of water and wasterwater | 0.0 to 20.0 | Tungsten lamp @525 nm | ±0.2%/L to 25 °C | 0.1 |
Iron | EPA Phenantroline method 315B, for natural and treated waters | 0.00 to 5.00 | Tungsten lamp @525 nm | ±0.04 mg/L to 25 °C | 0.01 |
Ammonium | Idophenol method | 0.00 to 1.00 | 445 ± 5 nm, 495 ± 5 nm, 555 ± 5 nm, 570 ± 5 nm, 605 ± 5 nm, 655 ± 5 nm, automatic wavelength selection | ±0.1 mg/L to 20 °C | 0.01 |
Nitrites | YSI Nitricol method | 0.00 to 0.5 | ±0.1 mg/L to 20 °C | 0.001 | |
Nitrates | YSI Nitratest method | 0.00 to 1.00 | ±0.1 mg/L to 20 °C | 0.001 | |
Phosphates | YSI Phosphate LR method | 0.00 to 4.00 | ±0.1 mg/L to 20 °C | 0.01 | |
Potassium | YSI Potassium test based on reagent of sodium tetraphenylboron | 0.0 to 12.0 | ±0.1 mg/L to 20 °C | 0.1 |
No. | Parameter | Recommended Concentration | Results | Samples with Adequate Concentration | Reference | ||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Cant. | % | ||||
1 | EC (mS/cm) | >1 | 0.62 | 128.4 | 30 | 90.91 | [5] |
2 | ppt | >0.5 | 0.31 | 64 | 29 | 87.88 | - |
3 | T° (°C) | 28–32 °C | 22.6 | 32.3 | 34 | 100.00 | [27] |
4 | pH | 6.00–9.00 | 7.48 | 8.83 | 34 | 100.00 | [5] |
5 | NH4+ (mg/L) | <0.5 | 0 | 28 | 28 | 84.85 | [28] |
6 | PO43– (mg/L) | - | 0.41 | 2.69 | - | - | - |
7 | NO2– (mg/L) | <1.45 | 0 | 2.685 | 32 | 96.97 | [29] |
8 | NO3– (mg/L) | < 60 | 0.31 | 71.86 | 31 | 93.94 | [27] |
9 | K+ (mg/L) | - | 0 | 2440 | - | - | - |
10 | Fe (mg/L) | <0.3 | 0 | 2.46 | 29 | 87.88 | [27] |
11 | Mn (mg/L) | <1 | 0 | 8.3 | 28 | 84.85 | [30] |
12 | Mg2⁺ (mg/L) | - | 5 | 2000 | - | - | - |
Well | Site | Coordinate | SL (m) | EC (mS/cm) | Ro (ohm-m) | Rw (ohm-m) | |
---|---|---|---|---|---|---|---|
X | Y | ||||||
17 | Culebras(CU) | 746,764 | 2,810,846 | 5.2 | 5.87 | 0.54 | 1.70357751 |
30 | La Brecha 2 (BR2) | 762,024 | 2,803,857 | 1 | 61 | 0.39 | 0.16393443 |
1 | Las Glorias (GL) | 749,750 | 2,799,817 | 3.5 | 6.68 | 0.66 | 1.49700599 |
5 | Roberto Barrios (RB) | 739,441 | 2,825,759 | 2.45 | 5.69 | 3.32 | 1.75746924 |
26 | Las Parritas (PR) | 738,519 | 2,835,627 | 2 | 3.71 | 2.99 | 2.69541779 |
9 | Sacrificio (SC) | 738,408 | 2,814,322 | 2.7 | 3.15 | 4.98 | 3.17460317 |
32 | La 19 | 744,854 | 2,834,744 | 1.1 | 1.95 | 6.1 | 5.12820513 |
6 | El Progreso (PR) | 745,516 | 2,825,179 | 2.2 | 2.98 | 6.39 | 3.37837838 |
33 | El Pato (PA) | 751,308 | 2,830,279 | - | 2.61 | 6.85 | 3.83141762 |
10 | Cruces (CR) | 751,738 | 2,832499 | 3.4 | 1.73 | 11 | 5.78034682 |
22 | Ranchito de Castro (RC) | 759,584 | 2,832,749 | 2.7 | 2.06 | 11.95 | 4.85436893 |
20 | Marcol (MR) | 749,883 | 2,822,226 | 5.2 | 1.35 | 14.59 | 7.40740741 |
31 | CIIDIR (CI) | 753,078 | 2,827,903 | 4.1 | 1.09 | 17.2 | 9.17431193 |
EC | pH | NH4+ | PO43− | NO2− | NO3− | K+ | Fe | Mn | Mg⁺2 | Ca⁺2 | Na⁺ | Cl− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EC | 1.00 | ||||||||||||
pH | –0.32 | 1.00 | |||||||||||
NH4+ | 0.47 | –0.23 | 1.00 | ||||||||||
PO43– | –0.16 | 0.22 | –0.17 | 1.00 | |||||||||
NO2– | –0.10 | 0.00 | –0.08 | 0.16 | 1.00 | ||||||||
NO3– | –0.19 | 0.05 | –0.10 | 0.23 | 0.47 | 1.00 | |||||||
K+ | 0.92 | –0.25 | 0.29 | –0.06 | –0.08 | –0.18 | 1.00 | ||||||
Fe | 0.80 | –0.25 | 0.38 | 0.01 | –0.07 | –0.15 | 0.95 | 1.00 | |||||
Mn | 0.82 | –0.35 | 0.50 | 0.02 | 0.04 | –0.14 | 0.90 | 0.96 | 1.00 | ||||
Mg⁺2 | 0.99 | –0.30 | 0.37 | –0.16 | –0.10 | –0.20 | 0.94 | 0.80 | 0.80 | 1.00 | |||
Ca⁺2 | 0.99 | –0.37 | 0.51 | –0.13 | –0.10 | –0.20 | 0.93 | 0.85 | 0.87 | 0.98 | 1.00 | ||
Na⁺ | 0.99 | –0.32 | 0.52 | –0.15 | –0.08 | –0.17 | 0.94 | 0.86 | 0.86 | 0.98 | 0.99 | 1.00 | |
Cl– | 0.98 | –0.37 | 0.60 | –0.16 | –0.10 | –0.19 | 0.89 | 0.81 | 0.85 | 0.96 | 0.99 | 0.98 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza Ortiz, M.; Apún Molina, J.P.; Peinado Guevara, H.J.; Herrera Barrientos, J.; Belmonte Jiménez, S.I.; Ladrón de Guevara Torres, M.d.l.Á.; Delgado Rodríguez, O. Evaluation of Groundwater in the Coastal Portion of Guasave, Sinaloa for White Shrimp Farming (Penaeus vannamei) through VES, Chemical Composition, and Survival Tests. J. Mar. Sci. Eng. 2021, 9, 276. https://doi.org/10.3390/jmse9030276
Espinoza Ortiz M, Apún Molina JP, Peinado Guevara HJ, Herrera Barrientos J, Belmonte Jiménez SI, Ladrón de Guevara Torres MdlÁ, Delgado Rodríguez O. Evaluation of Groundwater in the Coastal Portion of Guasave, Sinaloa for White Shrimp Farming (Penaeus vannamei) through VES, Chemical Composition, and Survival Tests. Journal of Marine Science and Engineering. 2021; 9(3):276. https://doi.org/10.3390/jmse9030276
Chicago/Turabian StyleEspinoza Ortiz, Mauro, Juan Pablo Apún Molina, Héctor José Peinado Guevara, Jaime Herrera Barrientos, Salvador Isidro Belmonte Jiménez, María de los Ángeles Ladrón de Guevara Torres, and Omar Delgado Rodríguez. 2021. "Evaluation of Groundwater in the Coastal Portion of Guasave, Sinaloa for White Shrimp Farming (Penaeus vannamei) through VES, Chemical Composition, and Survival Tests" Journal of Marine Science and Engineering 9, no. 3: 276. https://doi.org/10.3390/jmse9030276
APA StyleEspinoza Ortiz, M., Apún Molina, J. P., Peinado Guevara, H. J., Herrera Barrientos, J., Belmonte Jiménez, S. I., Ladrón de Guevara Torres, M. d. l. Á., & Delgado Rodríguez, O. (2021). Evaluation of Groundwater in the Coastal Portion of Guasave, Sinaloa for White Shrimp Farming (Penaeus vannamei) through VES, Chemical Composition, and Survival Tests. Journal of Marine Science and Engineering, 9(3), 276. https://doi.org/10.3390/jmse9030276