A New Cross-Platform Instrument for Microstructure Turbulence Measurements
Abstract
:1. Introduction
2. CPMTM Design
2.1. General Considerations
2.2. Instrument Design
2.3. Sensors and Sampling
2.4. Vibration-Damping Device
3. Laboratory Experiment
3.1. Acoustic Doppler Velocimeter
3.2. Experimental Setup and Procedure
3.3. Comparison between CPMTM and ADV
4. Field Experiment
4.1. Implementation on the AUV
4.2. Site and Deployment
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statemen
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
CPMTM | Cross-platform instrument for microstructure turbulence measurement |
AUV | Autonomous underwater vehicle |
nSCS | Northern South China Sea |
AD | Analog-digital |
ADV | Acoustic Doppler velocimeter |
CAS | Chinese Academy of Sciences |
DVL | Doppler velocity log |
CTD | Conductivity, temperature, and depth |
cpm | Cycles per meter |
References
- Yasutaka, G.; Ichiro, Y.; Maki, N. Comparison of Turbulence Intensity from CTD-Attached and Free-Fall Microstructure Profilers. J. Atmos. Ocean. Technol. 2017, 35, 147–162. [Google Scholar]
- Shang, X.D.; Liang, C.D.; Chen, G.Y. Spatial distribution of turbulent mixing in the upper ocean of the south china sea. Ocean Sci. 2017, 13, 503–519. [Google Scholar] [CrossRef] [Green Version]
- Lueck, R.G.; Wolk, F.; Yamazaki, H. Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr. 2002, 58, 153–174. [Google Scholar] [CrossRef]
- Dhanak, M.R.; Holappa, K. An Autonomous Ocean Turbulence Measurement Platform. J. Atmos. Ocean. Technol. 1999, 16, 1506–1518. [Google Scholar] [CrossRef]
- Goodman, L.; Wang, Z. Turbulence Observations in the Northern Bight of Monterey Bay from a Small AUV. J. Mar. Syst. 2009, 77, 441–458. [Google Scholar] [CrossRef]
- Tippenhauer, S.; Dengler, M.; Fischer, T.; Kanzow, T. Turbulence and finestructure in a deep ocean channel with sill overflow on the mid-Atlantic ridge. Deep-Sea Res. Part I 2015, 99, 10–22. [Google Scholar] [CrossRef]
- Fisher, A.W.; Nidzieko, N.J.; Scully, M.E.; Chant, R.J.; Hunter, E.J.; Mazzini, P.L.F. Turbulent Mixing in a Far-Field Plume During the Transition to Upwelling Conditions: Microstructure Observations From an AUV. Geophys. Res. Lett. 2018, 45, 9765–9773. [Google Scholar] [CrossRef]
- Wolk, F.; Lueck, R.G.; St. Laurent, L. Turbulence measurements from a glider. In Proceedings of the OCEANS 2009, MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges, Biloxi, MS, USA, 26–29 October 2009. [Google Scholar]
- Creed, E.; Ross, W.; Lueck, R.; Stern, P.; Douglas, W.; Wolk, F.; Hall, R. Integration of a RSI microstructure sensing package into a Seaglider. In Proceedings of the OCEANS 2015—MTS/IEEE Washington 2015, Washington, DC, USA, 19–22 October 2015. [Google Scholar]
- Todd, R.E. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream. Geophys. Res. Lett. 2017, 44, 6316–6325. [Google Scholar] [CrossRef]
- Nagai, T.; Inoue, R.; Tandon, A.; Yamazaki, H. Evidence of enhanced double-diffusive convection below the main stream of the Kuroshio Extension. J. Geophys. Res. Ocean. 2015, 120, 8402–8421. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Luan, X.; Deng, Z.D.; Song, D.; Zang, S.; Yang, H.; Xin, J.; Chen, X. Autonomous ocean turbulence measurements from a moored upwardly rising profiler based on a buoyancy-driven mechanism. Mar. Technol. Soc. J. 2017, 51, 12–22. [Google Scholar] [CrossRef]
- Wolk, F.; Yamazaki, H.; Seuront, L.; Lueck, R.G. A New Free-Fall Profiler for Measuring Biophysical Microstructure. J. Atmos. Ocean. Technol. 2002, 19, 780. [Google Scholar] [CrossRef]
- Osborn, T.R.; Crawford, W.R. An Airfoil Probe for Measuring Turbulent Velocity Fluctuations in Water. In Air-Sea Interaction; Springer: Boston, MA, USA, 1980. [Google Scholar]
- Moum, J.N.; Lueck, R.G. Causes and implications of noise in oceanic dissipation measurements. Deep Sea Res. Part A Oceanogr. Res. Pap. 1985, 32, 379–390. [Google Scholar] [CrossRef]
- Prandke, H.; Stips, A. Test measurements with an operational microstructure-turbulence profiler: Detection limit of dissipation rates. Aquat. Sci. 1998, 60, 191. [Google Scholar] [CrossRef]
- Nie, Y.; Luan, X.; Song, D.; Gao, Q.; Yang, H. Soft Connection Based Vibration Reduction for an Autonomous Ocean Turbulence Measurement Platform. J. Vib. Shock. 2020, 39, 82–88. [Google Scholar]
- Song, T.; Chiew, Y.M. Turbulence measurement in nonuniform open-channel flow using Acoustic Doppler Velocimeter (ADV). J. Eng. Mech. 2001, 127, 219–232. [Google Scholar] [CrossRef]
- García, C.M.; Cantero, M.I.; Niño, Y.; García, M.H. Turbulence Measurements with Acoustic Doppler Velocimeters. J. Hydraul. Eng. 2005, 131, 1062–1073. [Google Scholar] [CrossRef]
- Sulaiman, M.S.; Sinnakaudan, S.K.; Shukor, M.R. Near bed turbulence measurement with acoustic doppler velocimeter (ADV). KSCE J. Civ. Eng. 2013, 17, 1515. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in an incompressible viscous fluid for very large Reynolds number. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1991, 434, 9–13. [Google Scholar]
- Gratiot, N.; Mory, M.; Auchère, D. An acoustic Doppler velocimeter (ADV) for the characterisation of turbulence in concentrated fluid mud. Cont. Shelf Res. 2000, 20, 1551–1567. [Google Scholar] [CrossRef]
- Huang, Y.; Qiao, J.; Yu, J.; Wang, Z.; Xie, Z.; Liu, K. Sea-Whale 2000: A Long-range Hybrid Autonomous Underwater Vehicle for Ocean Observation. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; 20 June 2019. [Google Scholar]
- Wyngaard, J.C.; Rockwell, L.; Friehe, C.A. Errors in the measurement of turbulence upstream of an axisymmetric body. J. Atmos. Ocean. Technol. 1985, 2, 605–614. [Google Scholar] [CrossRef]
- Fer, I.; Paskyabi, M.B. Autonomous Ocean Turbulence Measurements Using Shear Probes on a Moored Instrument. J. Atmos. Ocean. Technol. 2014, 31, 474–490. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.L. Statistical theory of turbulence. Proc. R. Soc. Lond. Ser. 1935, A151, 421–444. [Google Scholar] [CrossRef] [Green Version]
- Oakey, N.S. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr. 1982, 12, 256–271. [Google Scholar] [CrossRef] [Green Version]
- Scheifele, B.; Waterman, S.; Carpenter, J. Turbulent dissipation rates, mixing, and heat fluxes in the Canadian Arctic from glider-based microstructure measurements. In Proceedings of the International Symposium on Stratified Flows, San Diego, CA, USA, 29 August–1 September 2016. [Google Scholar]
- Osborn, T.R. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 1980, 10, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Nasmyth, P.W. Oceanic Turbulence. Ph.D. Thesis, Department of Physics, University of British Columbia, Vancouver, BC, Canada, 1970; p. 69. [Google Scholar]
- Fer, I.; Peterson, A.K.; Ullgren, J.E. Microstructure Measurements from an Underwater Glider in the Turbulent Faroe Bank Channel Overflow. J. Atmos. Ocean. Technol. 2014, 31, 1128–1150. [Google Scholar] [CrossRef] [Green Version]
- Goodman, L.; Levine, E.R.; Lueck, R.G. On Measuring the Terms of the Turbulent Kinetic Energy Budget from an AUV. J. Atmos. Ocean. Technol. 2006, 23, 977–990. [Google Scholar] [CrossRef] [Green Version]
Parameter | Sensor | Range | Precision | Resolution | Frequency |
---|---|---|---|---|---|
Velocity shear | Shear probe | 0–10 s−1 | 5% | 10−3 s−1 | 1024 Hz |
High-resolution temperature | FP07 | −5–35 °C | 0.005 °C | 10−5 °C | 1024 Hz |
Vibration | Accelerometer | ±2 g | ±1% | 10−5 g | 512 Hz |
Pressure | Keller | 2000 dbar | 0.1% of Fs | 0.001 dbar | 10 Hz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Y.; Yang, H.; Song, D.; Huang, Y.; Liu, X.; Hui, X. A New Cross-Platform Instrument for Microstructure Turbulence Measurements. J. Mar. Sci. Eng. 2021, 9, 1051. https://doi.org/10.3390/jmse9101051
Nie Y, Yang H, Song D, Huang Y, Liu X, Hui X. A New Cross-Platform Instrument for Microstructure Turbulence Measurements. Journal of Marine Science and Engineering. 2021; 9(10):1051. https://doi.org/10.3390/jmse9101051
Chicago/Turabian StyleNie, Yunli, Hua Yang, Dalei Song, Yan Huang, Xiuyan Liu, and Xianghua Hui. 2021. "A New Cross-Platform Instrument for Microstructure Turbulence Measurements" Journal of Marine Science and Engineering 9, no. 10: 1051. https://doi.org/10.3390/jmse9101051
APA StyleNie, Y., Yang, H., Song, D., Huang, Y., Liu, X., & Hui, X. (2021). A New Cross-Platform Instrument for Microstructure Turbulence Measurements. Journal of Marine Science and Engineering, 9(10), 1051. https://doi.org/10.3390/jmse9101051