Radioactivity Monitoring at North Aegean Sea Integrating In-Situ Sensor in an Ocean Observing Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. The Fixed Mooring System (Athos Station)
2.2. Acquisition and Data Analysis
2.3. Full Spectrum Analysis (FSA) Technique
3. Results
3.1. Quality Control of γ-Ray Spectra
3.2. Gross Gamma-Ray Intensity Analysis
3.3. Radioactivity Analysis
4. Discussion
4.1. MDA of 137Cs (24 h Acquisition)
4.2. Theoretical Estimation of 137Cs MDA
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aakens, U.R. Radioactivity monitored from moored Oceanographic buoys. Chem. Ecol. 1995, 10, 61–69. [Google Scholar] [CrossRef]
- Wedekind, C.H.; Schilling, G.; Grüttmüller, M.; Becker, K. Gamma-radiation monitoring network at sea. Appl. Radiat. Isot. 1999, 50, 733–741. [Google Scholar] [CrossRef]
- Povinec, P.P.; Osvath, I.; Baxter, M.S. Underwater Gamma-spectrometry with HPGe and NaI(Tl) detectors. Appl. Radiat. Isot. 1996, 47, 1127–1133. [Google Scholar] [CrossRef]
- Klusoň, J. Environmental monitoring and in situ gamma spectrometry. Radiat. Phys. Chem. 2001, 61, 209–216. [Google Scholar] [CrossRef]
- Tsabaris, C.; Ballas, D. On line gamma-ray spectrometry. Appl. Radiat. Isot. 2005, 62, 82–89. [Google Scholar] [CrossRef]
- Pensieri, S.; Patiris, D.; Alexakis, S.; Anagnostou, M.N.; Prospathopoulos, A.; Tsabaris, C.; Bozzano, R. Integration of underwater radioactivity and acoustic sensors into an open sea near real-time multi-parametric observation system. Sensors 2018, 18, 2737. [Google Scholar] [CrossRef]
- Byun, J.-I.; Choi, S.-W.; Song, M.-H.; Chang, B.-U.; Kim, Y.-J.; Yun, J.-Y. A large buoy-based radioactivity monitoring system for gamma-ray emitters in surface seawater. Appl. Radiat. Isot. 2020, 162, 109172. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.; Liu, D.; Zhang, Y.; Cheng, Y. Development and deployment of an autonomous sensor for the in-situ radioactivity measurement in the marine environment. Appl. Radiat. Isot. 2018, 142, 181–186. [Google Scholar] [CrossRef]
- Caffrey, J.A.; Higley, K.A.; Farsoni, A.T.; Smith, S.; Menn, S. Development and deployment of an underway radioactive cesium monitor off the Japanese coast near Fukushima Dai-ichi. J. Environ. Radioact. 2012, 111, 120–125. [Google Scholar] [CrossRef]
- Sartini, L.; Simeone, F.; Pani, P.; Bue, N.L.; Marinaro, G.; Grubich, A.; Lobko, A.; Etiope, G.; Capone, A.; Favali, P.; et al. GEMS: Underwater spectrometer for long-term radioactivity measurements. Nucl. Instrum. Methods A 2011, 626–627, S145–S147. [Google Scholar] [CrossRef]
- Thornton, B.; Ohnishi, S.; Ura, T.; Odano, N.; Fujita, T. Continuous measurement of radionuclide distribution off Fukushima using a towed sea-bed gamma ray spectrometer. Deep-Sea Res. 2013, 79, 10–19. [Google Scholar] [CrossRef]
- Povinec, P.P.; Eriksson, M.; Scholten, J.; Betti, M. Marine Radioactivity Analysis. In Handbook of Radioactivity Analysis, 3rd ed.; L’Annunziata, M.F., Ed.; Academic Press: Amsterdam, The Netherlands, 2012; Chapter 12; pp. 769–832. [Google Scholar]
- Uddin, S.; Behbehani, M.; Aba, A.; Al-Ghadban, A.N. Naturally Occurring Radioactive Material (NORM) in seawater of the northern Arabian Gulf. Mar. Pollut. Bull. 2017, 123, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Fowler, S.W.; Behbehani, M.; Al-Ghadban, A.N.; Swarzenski, P.W.; Al-Awadhi, N. A review of radioactivity in the Gulf region. Mar. Pollut. Bull. 2020, 159, 111481. [Google Scholar] [CrossRef] [PubMed]
- Patiris, D.L.; Tsabaris, C.; Schmidt, M.; Karageorgis, A.P.; Prospathopoulos, A.M.; Alexakis, S.; Linke, P. Mobile underwater in situ gamma-ray spectroscopy to localize groundwater emanation from pockmarks in the Eckernförde bay, Germany. Appl. Radiat. Isot. 2018, 140, 305–313. [Google Scholar] [CrossRef]
- Tsabaris, C.; Patiris, D.L.; Pappa, F.K.; Alexakis, S.; Michalopoulos, P. Preliminary investigation of olimpi field, Mediterranean Sea, using in-situ and laboratory radio-tracing methods. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2020, 171, 104689. [Google Scholar] [CrossRef]
- Tsabaris, C.; Scholten, J.; Karageorgis, A.P.; Comanducci, J.-F.; Georgopoulos, D.; Liong Wee Kwong, L.; Patiris, D.L.; Papathanassiou, E. Underwater in situ measurements of radionuclides in selected submarine groundwater springs, Mediterranean Sea. Radiat. Prot. Dosim. 2010, 142, 273–281. [Google Scholar] [CrossRef]
- Eleftheriou, G.; Pappa, F.Κ.; Maragos, N.; Tsabaris, C. Continuous monitoring of multiple submarine springs by means of gamma-ray spectrometry. J. Environ. Radioact. 2020, 216, 106180. [Google Scholar] [CrossRef]
- Baskaran, M.; Swarzenski, P.W. Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida. Mar. Chem. 2007, 104, 27–42. [Google Scholar] [CrossRef]
- Bottardi, C.; Albéri, M.; Baldoncini, M.; Chiarelli, E.; Montuschi, M.; Giulia, K.; Raptis, C.; Serafini, A.; Strati, V.; Mantovani, F. Rain rate and radon daughters’ activity. Atmos. Environ. 2020, 238, 117728. [Google Scholar] [CrossRef]
- Boutin, J.; Chao, Y.; Asher, W.E.; Delcroix, T.; Drucker, R.; Drushka, K.; Kolodziejczyk, N.; Lee, T.; Reul, N.; Reverdin, G.; et al. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability. Bull. Am. Meteorol. Soc. 2016, 97, 1391–1407. [Google Scholar] [CrossRef]
- Drushka, K.; Asher, W.E.; Jessup, A.T.; Thompson, E.J.; Iyer, S.; Clark, D. Capturing Fresh Layers with the Surface Salinity Profiler. Oceanography 2019, 32, 76–85. [Google Scholar] [CrossRef]
- Perivoliotis, L.; Petihakis, G.; Korres, M.; Ballas, D.; Frangoulis, C.; Pagonis, P.; Ntoumas, M.; Pettas, M.; Chalkiopoulos, A.; Sotiropoulou, M.; et al. The Poseidon System, An Integrated Observing infrastructure at the Eastern Mediterranean as a contribution to the European Ocean Observing System. Operational Oceanography serving Sustainable Marine Development. In Proceedings of the Eight EuroGOOS International Conference, Bergen, Norway, 3–5 October 2017; Buch, E., Fernández, V., Eparkhina, D., Gorringe, P., Nolan, G., Eds.; EuroGOOS: Brussels, Belgium, 2018; pp. 53–61, ISBN 978-2-9601883-3-2. [Google Scholar]
- Petihakis, G.; Perivoliotis, L.; Korres, G.; Ballas, D.; Frangoulis, C.; Pagonis, P.; Ntoumas, M.; Pettas, M.; Chalkiopoulos, A.; Sotiropoulou, M.; et al. An integrated open-coastal biogeochemistry, ecosystem and biodiversity observatory of the eastern Mediterranean-the Cretan Sea component of the POSEIDON system. Ocean Sci. 2018, 14, 1223–1245. [Google Scholar] [CrossRef]
- Tsabaris, C.; Vlachos, D.S.; Papadopoulos, C.T.; Vlastou, R.; Kalfas, C.A. Set up and application of an Underwater γ-ray spectrometer for radioactivity Measurements. Mediterr. Mar. Sci. 2005, 6, 35–40. [Google Scholar] [CrossRef][Green Version]
- Vlachos, D.S.; Tsabaris, C. Response Function Calculation of an Underwater Gamma Ray NaI(Tl) Spectrometer. Nucl. Instrum. Methods A 2005, 539, 413–420. [Google Scholar] [CrossRef]
- Tsabaris, C.; Bagatelas, C.; Dakladas, T.; Papadopoulos, C.T.; Vlastou, R.; Chronis, G.T. An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl. Rad. Isot. 2008, 66, 1419–1426. [Google Scholar] [CrossRef]
- Bagatelas, C.; Tsabaris, C.; Kokkoris, M.; Papadopoulos, C.T.; Vlastou, R. Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation. Environ. Monit. Assess. 2010, 165, 159–168. [Google Scholar] [CrossRef]
- Kalfas, C.A.; Axiotis, M.; Tsabaris, C. SPECTRW: A software package for nuclear and atomic spectroscopy. Nucl. Instrum. Methods A 2016, 830, 265–274. [Google Scholar] [CrossRef]
- Caciolli, A.; Baldoncini, M.; Bezzon, G.P.; Broggini, C.; Buso, G.P.; Callegari, I.; Colonna, T.; Fiorentini, G.; Guastaldi, E.; Mantovani, F.; et al. A new FSA approach for in situ γ ray spectroscopy. Sci. Total Environ. 2012, 414, 639–645. [Google Scholar] [CrossRef]
- Hendriks, P.H.G.M.; Limburg, J.; de Meijer, R.J. Full-spectrum analysis of natural γ-ray spectra. J. Environ. Radioact. 2001, 53, 365–380. [Google Scholar] [CrossRef]
- van der Graaf, E.R.; Limburg, J.; Koomans, R.L.; Tijs, M. Monte Carlo based calibration of scintillation detectors for laboratory and in situ gamma ray measurements. J. Environ. Radioact. 2011, 102, 270–282. [Google Scholar] [CrossRef]
- Maučec, M.; de Meijer, R.J.; Rigollet, C.; Hendriks, P.H.G.M.; Jones, D.G. Detection of radioactive particles offshore by γ-ray spectrometry Part I: Monte Carlo assessment of detection depth limits. Nucl. Instrum. Methods 2004, 525, 593–609. [Google Scholar] [CrossRef]
- Berlizov, A.N. MCNP-CP a Correlated Particle Radiation Source Extension of a General Purpose Monte Carlo N Particle Transport Code; Semkov, T.M., Pommé, S., Jerome, S.M., Eds.; ACS Symposium Series 945; American Chemical Society: Washington, DC, USA, 2006; pp. 183–194. [Google Scholar]
- Androulakaki, E.G.; Kokkoris, M.; Tsabaris, C.; Eleftheriou, G.; Patiris, D.L.; Pappa, F.K.; Vlastou, R. In situ γ-ray spectrometry in the marine environment using full spectrum analysis for natural radionuclides. Appl. Radiat. Isot. 2016, 114, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Tsabaris, C.; Thanos, I. An underwater sensing system for monitoring radioactivity in the marine environment. Mediterr. Mar. Sci. 2004, 5, 5–12. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Velaoras, D.; Kassis, D.; Perivoliotis, L.; Pagonis, C.; Hondronasios, A.; Nittis, K. Temperature and salinity variability in the Greek Seas based on POSEIDON stations time series: Preliminary results. Mediterr. Mar. Sci. 2013, 14, 5–18. [Google Scholar] [CrossRef]
- Vlastou, R.; Ntziou, I.T.; Kokkoris, M.; Papadopoulos, C.T.; Tsabaris, C. Monte Carlo simulation of g-ray spectra from natural radionuclides recorded by a NaI detector in the marine environment. Appl. Radiat. Isot. 2006, 64, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, B.; Liu, D.; Lv, H.; Feng, X. Research on minimum detectable activity (MDA) of underwater gamma spectrometer for radioactivity measurement in the marine environment. Appl. Radiat. Isot. 2020, 155, 108917. [Google Scholar] [CrossRef] [PubMed]
SPECTRW Analysis | FSA Analysis | Vatopedi Station | Lemnos Station | ||||||
---|---|---|---|---|---|---|---|---|---|
Date | Time | 214Bi | 214Pb | 214Bi | 214Pb | Rain | Wind Direction | Rain | Wind Direction |
(Bq l−1) | (Bq l−1) | (Bq l−1) | (Bq l−1) | (mm) | (mm) | ||||
22/11/2019 | 1:00 | 5.2 (4) | 5.2 (4) | 5.2 | 4.8 | 9.2 | ESE | 0.8 | NE |
25/11/2019 | 13:00 | 2.6 (4) | 2.6 (4) | 2.9 | 2.2 | 22.8 | ESE | 8 | ENE |
25/11/2019 | 16:00 | 2.5 (4) | 2.5 (4) | 2.7 | 2.3 | 28.2 | E/ESE | 15.6 | ENE |
26/11/2019 | 13:00 | 1.4 (4) | 1.2 (5) | 1.7 | 1.4 | 0 | NNE/ESE | 0.2 | SW/NW |
27/11/2020 | 16:00 | 0.7 (17) | 0.8 (19) | 0 | - | 0 | SE | ||
4/12/2019 | 1:00 | 0.8 (12) | 0.9 (18) | 11.8 | ESE | 2.2 | NE | ||
4/12/2019 | 4:00 | 1.4 (10) | 1.3 (21) | 1.7 | 1.4 | 5.8 | SE | 4.4 | NNE |
4/12/2019 | 7:00 | 1.2 (9) | 1.2 (14) | 1.4 | 1.3 | 2.4 | ESE | 4.4 | NE |
4/12/2019 | 10:00 | 0.8 (13) | 0.9 (19) | 1.2 | ESE | 1.4 | NNE | ||
4/12/2019 | 13:00 | 0.7 (12) | 0.8 (16) | 0.2 | ESE | 0.4 | NNE | ||
8/12/2019 | 4:00 | 0.5 (16) | 0.5 (24) | 0 | WNW | 0.4 | WNW | ||
9/12/2019 | 4:00 | 0.5 (18) | 0.8 (16) | 0 | WNW | 0.2 | NW | ||
10/12/2019 | 22:00 | 0.5 (16) | 0.5 (27) | 0 | ESE | 0 | ΝΕ | ||
11/12/2019 | 1:00 | 0.7 (13) | 0.3 (38) | 0 | ESE | 0 | ΝΕ | ||
11/12/2019 | 7:00 | 0.6 (29) | 0.4 (32) | 8.4 | ESE | 4.2 | ΝΕ | ||
11/12/2019 | 10:00 | 1.0 (13) | 1.1 (15) | 1.1 | 1.2 | 10 | SE | 5.2 | ΝΕ |
11/12/2019 | 13:00 | 0.6 (15) | 0.3 (39) | 9.4 | SE | 0.2 | ΝΕ | ||
11/12/2019 | 16:00 | 0.7 (16) | 0.4 (35) | 3.8 | SE | 0 | ΝΕ | ||
11/12/2019 | 19:00 | 0.7 (14) | 0.7 (19) | 18.6 | SE | 0 | ΝΕ | ||
11/12/2019 | 22:00 | 0.7 (12) | 0.6 (21) | 16.8 | ESE | 0.8 | ΝΕ | ||
12/12/2019 | 1:00 | 1.1 (8) | 0.6 (30) | 8 | ESE/SE | 14.2 | ΝΕ | ||
12/12/2019 | 4:00 | 0.9 (10) | 0.9 (16) | 39.2 | SE | 2.2 | Ε/ΝΕ | ||
12/12/2019 | 10:00 | 0.7 (12) | 0.6 (28) | 43.4 | SSE | 0 | ΝΕ/Ε | ||
12/12/2019 | 13:00 | 5.2 (4) | 5.3 (4) | 5.2 | 4.8 | 6.2 | - | 0 | Ε/ΕΝΕ |
12/12/2019 | 16:00 | 5.4 (4) | 5.2 (4) | 5.2 | 4.3 | 0 | NW | 0 | ΝΕ |
12/12/2019 | 19:00 | 1 (10) | 1.1 (13) | 0.2 | NW | 0 | ΝΕ | ||
12/12/2019 | 22:00 | 0.6 (16) | 0.4 (30) | 0.2 | S | 0 | NNW | ||
13/12/2019 | 1:00 | 0.5 (18) | 0.7 (22) | 0 | S | 0.2 | NNW | ||
14/12/2019 | 16:00 | 0.7 (14) | 0.8 (19) | 14.6 | ESE/SE | 0 | ESE/SE | ||
14/12/2019 | 19:00 | 1.4 (8) | 1.9 (10) | 1.7 | 1.9 | 3 | NNW | 0.2 | ENE |
14/12/2019 | 22:00 | 1.4 (8) | 1.8 (10) | 1.9 | 1.8 | 0 | NNW | 0.4 | WNW |
15/12/2019 | 1:00 | 0.7 (15) | 0.5 (28) | 0 | SSW | 0 | WNW | ||
20/12/2019 | 1:00 | 1 (20) | 1.2 (11) | 0 | - | 0 | - | ||
27/1/2020 | 9:30 | 0.6 (14) | 0.8 (16) | 0 | WSW | 0 | SSW | ||
27/1/2020 | 12:30 | 0.6 (13) | 0.7 (17) | 0 | WSW | 2.8 | SSE | ||
27/1/2020 | 15:30 | 0.5 (14) | 0.5 (23) | 0 | SSW | 0.4 | SW | ||
27/1/2020 | 18:30 | 0.5 (15) | 0.5 (24) | 0 | SSW | 0 | SW | ||
28/1/2020 | 3:30 | 0.5 (16) | 0.6 (21) | 0 | WNW | 0 | - | ||
30/1/2020 | 0:30 | 0.5 (17) | 0.5 (23) | 0 | WNW | 0 | WSW | ||
30/1/2020 | 3:30 | 0.4 (23) | 0.4 (23) | 0 | WNW | 0 | WNW | ||
30/1/2020 | 6:30 | 0.4 (20) | 0.5 (23) | 0 | NW | 0.2 | WNW | ||
30/1/2020 | 9:30 | 0.5 (15) | 0.5 (20) | 0 | NNW | 1.2 | NE |
Measurement Period | MDA for 137Cs (Bq L−1) |
---|---|
12/12/2019 (without background subtraction) | 0.041 |
12/12/2019 (background subtraction) | 0.023 |
11/12/2019 (without background subtraction) | 0.033 |
11/12/2019 (background subtraction) | 0.018 |
Background | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsabaris, C.; Androulakaki, E.G.; Ballas, D.; Alexakis, S.; Perivoliotis, L.; Iona, A. Radioactivity Monitoring at North Aegean Sea Integrating In-Situ Sensor in an Ocean Observing Platform. J. Mar. Sci. Eng. 2021, 9, 77. https://doi.org/10.3390/jmse9010077
Tsabaris C, Androulakaki EG, Ballas D, Alexakis S, Perivoliotis L, Iona A. Radioactivity Monitoring at North Aegean Sea Integrating In-Situ Sensor in an Ocean Observing Platform. Journal of Marine Science and Engineering. 2021; 9(1):77. https://doi.org/10.3390/jmse9010077
Chicago/Turabian StyleTsabaris, Christos, Effrossyni G. Androulakaki, Dionysios Ballas, Stylianos Alexakis, Leonidas Perivoliotis, and Athanasia Iona. 2021. "Radioactivity Monitoring at North Aegean Sea Integrating In-Situ Sensor in an Ocean Observing Platform" Journal of Marine Science and Engineering 9, no. 1: 77. https://doi.org/10.3390/jmse9010077
APA StyleTsabaris, C., Androulakaki, E. G., Ballas, D., Alexakis, S., Perivoliotis, L., & Iona, A. (2021). Radioactivity Monitoring at North Aegean Sea Integrating In-Situ Sensor in an Ocean Observing Platform. Journal of Marine Science and Engineering, 9(1), 77. https://doi.org/10.3390/jmse9010077