Effects of Turbulence on the Vortex Modes Carried by Quasi-Diffracting Free Finite Energy Beam in Ocean
Abstract
1. Introduction
2. Wave Structure Function of Beam Waves
3. Transmitting Probability of Signal Vortex Modes
4. Effects of the Parameters of Oceanic Turbulence and Mathieu-Gaussian Beam
4.1. Influence of System Parameters
4.2. Influence of Oceanic Turbulence
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Cui, X.; Yin, X.; Chang, H.; Guo, Y.; Zheng, Z.; Sun, Z.; Liu, G.; Wang, Y. Analysis of an adaptive orbital angular momentum shift keying decoder based on machine learning under oceanic turbulence channels. Opt. Commun. 2018, 429, 138–143. [Google Scholar] [CrossRef]
- Baykal, Y.; Ata, Y.; Gökçe, M.C. Structure parameter of anisotropic atmospheric turbulence expressed in terms of anisotropic factors and oceanic turbulence parameters. Appl. Opt. 2019, 2, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Wu, G.; Yin, L.; Gui, Z.; Tian, Y. Propagation of optical coherence lattices in oceanic turbulence. Opt. Commun. 2018, 425, 80–84. [Google Scholar] [CrossRef]
- Ata, Y.; Baykal, Y. Effect of anisotropy on bit error rate for an asymmetrical Gaussian beam in a turbulent ocean. Appl. Opt. 2018, 57, 2258–2262. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Djordjevic, I.B. Power spectrum of refractive-index fluctuations in turbulent ocean and its effect on optical scintillation. Opt. Express 2018, 26, 10188–10202. [Google Scholar] [CrossRef]
- Pan, S.; Wang, L.; Wang, W.; Zhao, S. An Effective Way for Simulating Oceanic Turbulence Channel on the Beam Carrying Orbital Angular Momentum. Sci. Rep. 2019, 9, 14009. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Z.; Han, Y.; Hui, Y. Channel capacity of orbital-angular-momentum based wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence. J. Opt. Soc. Am. A 2019, 36, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Zheng, R.; Yue, P.; Ding, W.; Shen, C. Propagation properties of OAM modes carried by partially coherent LG beams in turbulent ocean based on an oceanic power-law spectrum. Opt. Commun. 2019, 443, 238–244. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of accelerating Airy beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Sun, Q.; Wang, J.; Lu, P.; Xie, W.; Xu, X. Generating a Bessel-Gaussian beam for the application in optical engineering. Sci. Rep. 2016, 5, 18665. [Google Scholar] [CrossRef]
- López-Mariscal, C.; Bandres, M.A.; Gutiérrez-Vega, J.C. Observation of the experimental propagation properties of Helmholtz-Gauss beams. Opt. Eng. 2006, 45, 068001. [Google Scholar] [CrossRef]
- Alvarez-Elizondo, M.B.; Rodríguez-Masegosa, R.; Gutiérrez-Vega, J.C. Generation of Mathieu-Gauss modes with an axicon-based laser resonator. Opt. Express 2008, 16, 18770–18775. [Google Scholar] [CrossRef]
- Zhao, Q.; Gong, L.; Li, Y. Shaping diffraction-free Lommel beams with digital binary amplitude masks. Appl. Opt. 2015, 54, 7553–7558. [Google Scholar] [CrossRef]
- Zamboni-Rached, M.; Mojahedi, M. Shaping finite-energy diffraction- and attenuation-resistant beams through Bessel-Gauss beam superposition. Phys. Rev. A 2015, 92, 043839. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y. Analysis of modal crosstalk for communication in turbulent ocean using Lommel-Gaussian beam. Opt. Express 2017, 25, 22565–22574. [Google Scholar] [CrossRef]
- Liang, Q.; Zhu, Y.; Zhang, Y. Approximations wander model for the Lommel Gaussian-Schell beam through unstable stratification and weak ocean-turbulence. Results Phys. 2019, 14, 102511. [Google Scholar] [CrossRef]
- Cheng, M.; Guo, L.; Li, J.; Zhang, Y. Channel Capacity of the OAM-Based Free-Space Optical Communication Links With Bessel-Gauss Beams in Turbulent Ocean. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Deng, S.; Zhu, Y.; Zhang, Y. Received Probability of Vortex Modes Carried by Localized Wave of Bessel–Gaussian Amplitude Envelope in Turbulent Seawater. J. Mar. Sci. Eng. 2019, 7, 203. [Google Scholar] [CrossRef]
- Deng, S.; Yang, D.; Zheng, Y.; Hu, L.; Zhang, Y. Transmittance of finite-energy frozen beams in oceanic turbulence. Results Phys. 2019, 15, 102802. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Zhao, S. Influence of oceanic turbulence on propagation of Airy vortex beam carrying orbital angular momentum. Optik 2019, 176, 49–55. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, M.; Luo, M.; Luo, Y.; Mi, X.; Zou, C.; Shu, C.; Zhu, X.; He, J.; Ouyang, S.; et al. Beam wander of a partially coherent Airy beam in oceanic turbulence. J. Opt. Soc. Am. A 2018, 35, 1457–1464. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, W.; Wang, L.; Li, W.; Gong, L.; Cheng, W.; Chen, H.; Gruska, J. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment. Sci. Rep. 2019, 9, 2025. [Google Scholar] [CrossRef]
- Karahroudi, M.K.; Moosavi, S.A.; Mobashery, A.; Parmoon, B.; Saghafifar, H. Performance evaluation of perfect optical vortices transmission in an underwater optical communication system. Appl. Opt. 2018, 57, 9148–9154. [Google Scholar] [CrossRef]
- Chafiq, A.; Hricha, Z.; Belafhal, A. A detailed study of Mathieu-Gauss beams propagation through an apertured ABCD optical system. Opt. Commun. 2006, 265, 594–602. [Google Scholar] [CrossRef]
- Gutiérrez-Vega, J.C.; Iturbe-Castillo, M.D.; Chávez-Cerda, S. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett. 2000, 25, 1493–1495. [Google Scholar] [CrossRef]
- Chafiq, A.; Hricha, Z.; Belafhal, A. Propagation of generalized Mathieu-Gauss beams throughparaxial misaligned optical systems. Opt. Commun. 2009, 282, 3934–3939. [Google Scholar] [CrossRef]
- Chafiq, A.; Hricha, Z.; Belafhal, A. Paraxial propagation of Mathieu beams through an apertured ABCD optical system. Opt. Commun. 2005, 253, 223–230. [Google Scholar] [CrossRef]
- Eyyuboǧlu, H.T. A study of source plane Mathieu beams. Appl. Phys. B 2008, 91, 629–637. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation Through Random Media; SPIE Press: Washington, DC, USA, 2005. [Google Scholar]
- Korotkova, O. Light Propagation in a Turbulent Ocean. Prog. Opt. 2018, 64, 1–43. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M.R. Tables of Integrals, Series, and Products, 5th ed.; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Nikishov, V.V.; Nikishov, V.I. Spectrum of turbulent fluctuations of the sea-water refraction index. Int. J. Fluid Mech. Res. 2000, 27, 82–98. [Google Scholar] [CrossRef]
- Baykal, Y. Effect of anisotropy on intensity fluctuations in oceanic turbulence. J. Mod. Opt. 2018, 65, 825–829. [Google Scholar] [CrossRef]
- Li, Y.; Yu, L.; Zhang, Y. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean. Opt. Express 2017, 25, 12203–12215. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, L.; Wang, Q.; Zhang, Y. Wander of the short-term spreading filter for partially coherent Gaussian beams through the anisotropic turbulent ocean. Appl. Opt. 2017, 56, 7046–7052. [Google Scholar] [CrossRef] [PubMed]
- Paterson, C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 2005, 94, 153901. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Zhang, X.; Li, H.; Xi, L. Transmission Characteristics of Adaptive Compensation for Joint Atmospheric Turbulence Effects on the OAM-Based Wireless Communication System. Appl. Sci. 2019, 9, 901. [Google Scholar] [CrossRef]
- Li, Y.; Han, Y.; Cui, Z.; Hui, Y. Performance analysis of the OAM based optical wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence. J. Opt. 2019, 21, 035702. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Zhang, Y.; Yang, D. Effects of Turbulence on the Vortex Modes Carried by Quasi-Diffracting Free Finite Energy Beam in Ocean. J. Mar. Sci. Eng. 2020, 8, 458. https://doi.org/10.3390/jmse8060458
Liang Q, Zhang Y, Yang D. Effects of Turbulence on the Vortex Modes Carried by Quasi-Diffracting Free Finite Energy Beam in Ocean. Journal of Marine Science and Engineering. 2020; 8(6):458. https://doi.org/10.3390/jmse8060458
Chicago/Turabian StyleLiang, Qiyong, Yixin Zhang, and Dongyu Yang. 2020. "Effects of Turbulence on the Vortex Modes Carried by Quasi-Diffracting Free Finite Energy Beam in Ocean" Journal of Marine Science and Engineering 8, no. 6: 458. https://doi.org/10.3390/jmse8060458
APA StyleLiang, Q., Zhang, Y., & Yang, D. (2020). Effects of Turbulence on the Vortex Modes Carried by Quasi-Diffracting Free Finite Energy Beam in Ocean. Journal of Marine Science and Engineering, 8(6), 458. https://doi.org/10.3390/jmse8060458