Spatiotemporal Storm Impact on the Northern Yucatan Coast during Hurricanes and Central American Cold Surge Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Historical Events
2.2. Methods
2.2.1. Storm-Impact Scaling Model
- (1)
- The swash regime is the condition during storms in which the wave runup is confined to the foreshore region (Rhigh < Dlow). The beach foreshore erodes and sand is moved offshore and returned to the beach during more calm conditions [10].
- (2)
- The collision regime occurs when the maximum water level exceeds the base of the dune (Dhigh > Rhigh > Dlow). The runup collides with the base of the dune causing erosion that may be more long-lasting than foreshore erosion as dunes are typically rebuilt through slower aeolian processes [10]. Eroded sand can be transported offshore or longshore at the same time and usually does not return to re-establish the dune.
- (3)
- The overwash regime occurs when Rhigh > Dhigh, implying that the runup overtops the dune (or berm crest), leading to erosion of the dune. The sand is transported landward and not readily returned to the seaward side of the island under post-storm conditions. However, other processes, such as aeolian transport may return overwashed sand to the beach foreshore [25]. The overwash regime contributes to a barrier island’s net landward migration.
- (4)
- The inundation regime occurs when Rlow > Dhigh and the sea level increase is enough to submerge a barrier island completely. The beach and dunes are completely and continually subaqueous. Limited observations suggest that the eroded sand undergoes a net landward transport on the order of 1 km. Therefore, to refine and expand the characterization of the inundation regime, more observations are needed [9].
2.2.2. Beach-Dune Morphology
2.2.3. Waves and Nearshore Hydrodynamics
2.2.4. Parametric Wave Runup Predictions
3. Results and Discussion
3.1. Hydrodynamic Forcing
3.2. Maximum Storm Impact along the Coast
3.3. Spatiotemporal Variability of Storm Impact
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rey, W.; Salles, P.; Mendoza, E.T.; Torres-Freyermuth, A.; Appendini, C.M. Assessment of coastal flooding and associated hydrodynamic processes on the Southeast coast of Mexico, during Central American Cold Surge events. Nat. Hazards Earth Syst. Sci. 2018, 18, 1681–1701. [Google Scholar] [CrossRef] [Green Version]
- Rey, W.; Mendoza, E.T.; Salles, P.; Zhang, K.; Teng, Y.-C.; Trejo-Rangel, M.A.; Franklin, G.L. Hurricane flood risk assessment for the Yucatan and Campeche State coastal area. Nat. Hazards 2019, 96, 1041–1065. [Google Scholar] [CrossRef]
- Salles, P.; Souza, A.J.; Torres-freyermuth, A.; López, J.; Appendini, C.M.; Meza-padilla, R. Hydrodynamics over sand dunes in the northern Yucatan Peninsula coast. In Proceedings of the 7th Coastal Dynamics Conference, Arcachon, France, 24–28 June 2013; pp. 1407–1416. [Google Scholar]
- Appendini, C.M.; Salles, P.; Tonatiuh Mendoza, E.; López, J.; Torres-Freyermuth, A. Longshore Sediment Transport on the Northern Coast of the Yucatan Peninsula. J. Coast. Res. 2012, 28, 1404–1417. [Google Scholar] [CrossRef]
- Cuevas-Jiménez, A.; Euán-Ávila, J. Morphodynamics of carbonate beaches in the Yucatán Peninsula. Cienc. Mar. 2009, 35, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, E.; Trejo-Rangel, M.A.; Salles, P.; Appendini, C.M.; Lopez-Gonzalez, J.; Torres-Freyermuth, A. Storm characterization and coastal hazards in the Yucatan Peninsula. In Proceedings of the 12 th International Coastal Symposium, Plymouth, UK, 8–12 April 2013; Conley, D.C., Masselink, G., Russell, P.E., O’Hare, T., Eds.; 2013; pp. 790–795. [Google Scholar]
- Medellín, G.; Mariño-Tapia, I.; Euán-Ávila, J. The Influence of a Seawall on Postnourishment Evolution in a Sea-Breeze-Dominated Microtidal Beach. J. Coast. Res. 2015, 316, 1449–1458. [Google Scholar] [CrossRef]
- Ruiz-martínez, G.; Mariño-Tapia, I.; Mendoza-Baldwin, E.G.; Silva Casarin, R.; Enriquez Ortiz, C.E. Identifying Coastal Defence Schemes through Morphodynamic Numerical Simulations along the Northern Coast of Yucatan, Mexico. J. Coast. Res. 2015, 32, 651. [Google Scholar]
- Sallenger, A.H. Storm Impact Scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Morton, R.A. Factors controlling storm impacts on coastal barriers and beaches—A preliminary basis for near real-time forecasting. J. Coast. Res. 2002, 18, 486–501. [Google Scholar]
- Stockdon, H.F.; Sallenger, A.H.; Holman, R.A.; Howd, P.A. A simple model for the spatially-variable coastal response to hurricanes. Mar. Geol. 2007, 238, 1–20. [Google Scholar] [CrossRef]
- Houser, C.; Hamilton, S. Sensitivity of post-hurricane beach and dune recovery to event frequency. Earth Surf. Process. Landf. 2009, 34, 242–252. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Serafin, K.A.; Ruggiero, P. Simulating extreme total water levels using a time-dependent, extreme value approach. J. Geophys. Res. Ocean. 2014, 119, 6305–6329. [Google Scholar] [CrossRef] [Green Version]
- Franklin, G.L.; Torres-Freyermuth, A.; Medellin, G.; Allende-Arandia, M.E.; Appendini, C.M. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico). Nat. Hazards Earth Syst. Sci. 2018, 18, 1247–1260. [Google Scholar] [CrossRef] [Green Version]
- Medellín, G.; Brinkkemper, J.A.; Torres-Freyermuth, A.; Appendini, C.M.; Mendoza, E.T.; Salles, P. Run-up parameterization and beach vulnerability assessment on a barrier island: A downscaling approach. Nat. Hazards Earth Syst. Sci. 2016, 16, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Chen, H.; Shih, H.; Chang, C.; Hsiao, S.; Chen, W.; Chen, Y.; Su, W.; Lin, L. Assessing the Potential Highest Storm Tide Hazard in Taiwan Based on 40-Year Historical Typhoon Surge Hindcasting. Atmosphere 2019, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-B.; Chen, H.; Hsiao, S.-C.; Chang, C.-H.; Lin, L.-Y. Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Eng. 2019, 188, 106260. [Google Scholar] [CrossRef]
- Perry, E.; Swift, J.; Gamboa, J.; Reeve, A.; Sanborn, R.; Marin, L.; Villasuso, M. Geologic and environmental aspects of surface cementation, north coast, Yucatan, Mexico. Geology 1989, 17, 818–821. [Google Scholar] [CrossRef]
- Batllori-Sampedro, E.; Febles-Patron, J.L.; Diaz-Sosa, J. Landscape change in Yucatan’s northwest coastal wetlands (1948–1991). Hum. Ecol. Rev. 1999, 6, 8–20. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Bosart, L.F.; Hakim, G.J.; Tyle, K.R.; Bedrick, M.A.; Bracken, W.E.; Dickinson, M.J.; Schultz, D.M. Large-Scale Antecedent Conditions Associated with the 12–14 March 1993 Cyclone (“Superstorm ‘93”) over Eastern North America. Mon. Weather Rev. 1996, 124, 1865–1891. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.M.; Bracken, W.E.; Bosart, L.F.; Hakim, G.J.; Bedrick, M.A.; Dickinson, M.J.; Tyle, K.R. The 1993 Superstorm Cold Surge: Frontal Structure, Gap Flow, and Tropical Impact. Mon. Weather Rev. 1997, 125, 5–39. [Google Scholar] [CrossRef] [Green Version]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Dingler, J.R.; Hsu, S.A.; Reiss, T.E. Theoretical and measured aeolian sand transport on a barrier island, Louisiana, USA. Sedimentology 1992, 39, 1031–1043. [Google Scholar] [CrossRef]
- DHI. MIKE 21 SW: Spectral Waves FM Module, User Guide; DHI Water & Environment: Hoersholm, Denmark, 2014; p. 122. [Google Scholar]
- Sørensen, O.R.; Kofoed-Hansen, H.; Rugbjerg, M.; Sørensen, L.S. A third-generation spectral wave model using an unstructured finite volume technique. In Proceedings of the 29th International Conference on Coastal Engineering, Lisbon, Portugal, 19–24 September 2004; pp. 894–906. [Google Scholar]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. In NOAA Technical Memorandum NESDIS NGDC-24; National Hurricane Center: Boulder, CO, USA, 2009; p. 19. [Google Scholar]
- Appendini, C.M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.; Ruiz-Salcines, P. On the Role of Climate Change on Wind Waves Generated by Tropical Cyclones in the Gulf of Mexico. Coast. Eng. J. 2017, 59, 1740001-1–1740001-32. [Google Scholar] [CrossRef]
- Ruiz-Salcines, P. Campos de Viento Para Hindcast de Oleaje: Reanálisis, Paramétricos y Fusión. Master’s Thesis, Department of Ciencias y Técnica del agua y del medio ambiente, Cantabria University, Santander, Spain, 2013; 84p. [Google Scholar]
- DHI. Mike 21 Flow model FM: Hydrodynamic Module, User Guide; DHI Water & Environment: Hoersholm, Denmark, 2014; p. 134. [Google Scholar]
- Zhao, D.H.; Shen, H.W.; Tabios, G.Q., III; Lai, J.S.; Tan, W.Y. Finite-Volume Two-Dimensional Unsteady-Flow Model for River Basins. J. Hydraul. Eng. 1994, 120, 863–883. [Google Scholar] [CrossRef]
- Sleigh, P.A.; Gaskell, P.H.; Berzins, M.; Wright, N.G. An Unstructured Finite Volume Algorithm for Predicting Flow in Rivers and Estuaries. Comput. Fluids 1998, 27, 479–508. [Google Scholar] [CrossRef]
- Andersen, O.B. Global ocean tides from ERS 1 and TOPEX/POSEIDON altimetry. J. Geophys. Res. 1995, 100, 25249–25259. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Swail, V.R.; Cox, A.T. On the use of NCEP-NCAR reanalysis surface marine wind fields for a long-term North Atlantic wave hindcast. J. Atmos. Ocean. Technol. 2000, 17, 532–545. [Google Scholar] [CrossRef]
- Sobey, R.J.; Young, I.R. Hurricane wind waves-a discrete spectral model. ASCE J. Waterw. Port Coast. Ocean Eng. 1986, 112, 370–389. [Google Scholar] [CrossRef]
- Jarvinen, B.R.; Neumann, C.J.; Davis, M.A.S. A Tropical Cyclone Data Tape for the North Atlantic basin, 1886–1983: Contents, limitations, and Uses; NOAA Technical Memorandum NWS NHC 25; National Hurricane Center: Miami, FL, USA, 1984; p. 21.
- Ruiz-salcines, P.; Salles, P.; Robles-Díaz, L.; Gabriel, D.-H.; Torres-freyermuth, A.; Appendini, C.M. On the Use of Parametric Wind Models for Wind Wave Modeling under Tropical Cyclones. Water 2019, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Bretschneider, C.L. A Non-Dimensional Stationary Hurricane Wave Model. In Proceedings of the Offshore Technology Conference, Offshore Technology Conference, Houston, TX, USA, 1–3 May 1972. [Google Scholar]
- Lin, N.; Chavas, D. On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res. Atmos. 2012, 117, 1–19. [Google Scholar] [CrossRef]
- Jelesnianski, C.; Chen, J.; Shaffer, W. SLOSH: Sea, Lake, and Overland Surges from Hurricanes; NOAA Technical Report NWS 48; NOAA/AOML Library; United States Department of Commerce: Miami, FL, USA, 1992; Volume 71.
- Lin, N.; Emanuel, K.A.; Smith, J.A.; Vanmarcke, E. Risk assessment of hurricane storm surge for New York City. J. Geophys. Res. 2010, 115, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Holland, G.J. An analytical model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Brinkkemper, J.; Torres-Freyermuth, A.; Mendoza, E.T.; Ruessink, B.G. Parameterization of Wave run-up on Beaches in Yucatan, Mexico: A Numerical Study. Coast. Din. 2013, 20, 225–234. [Google Scholar]
- Senechal, N.; Coco, G.; Bryan, K.R.; Holman, R.A. Wave runup during extreme storm conditions. J. Geophys. Res. Ocean. 2011, 116, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fi elds and rapidly varied fl ows in coastal waters. Coast. Eng. 2011, 58, 992–1012. [Google Scholar] [CrossRef]
- Appendini, C.M.; Torres-Freyermuth, A.; Oropeza, F.; Salles, P.; López, J.; Mendoza, E.T. Wave modeling performance in the Gulf of Mexico and Western Caribbean: Wind reanalyses assessment. Appl. Ocean Res. 2013, 39, 20–30. [Google Scholar] [CrossRef]
- Appendini, C.M.; Meza-padilla, R.; Abud-russell, S.; Proust, S.; Barrios, R.E.; Secaira-Fajardo, F. Effect of climate change over landfalling hurricanes at the Yucatan Peninsula. In Climatic Change; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Simmons, A.; Uppala, S.; Dee, D.; Kobayashi, S. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl. 2006, 25–35. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woolen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Chavas, D.R.; Lin, N.; Emanuel, K. A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part I: Comparison with Observed Structure*. J. Atmos. Sci. 2015, 72, 3647–3662. [Google Scholar] [CrossRef]
- Emanuel, K.; Rotunno, R. Self-Stratification of Tropical Cyclone Outflow. Part II: Implications for Storm Intensification. J. Atmos. Sci. 2011, 69, 988–996. [Google Scholar] [CrossRef] [Green Version]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, C.; Mariño-Tapia, I.J.; Herrera-Silveira, J.A. Dispersion in the Yucatan coastal zone: Implications for red tide events. Cont. Shelf Res. 2010, 30, 127–137. [Google Scholar] [CrossRef]
- Appendini, C.M.; Hernández-Lasheras, J.; Meza-Padilla, R.; Kurczyn, J.A. Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico. Clim. Dyn. 2018, 51, 3747–3763. [Google Scholar] [CrossRef]
- Reding, P.J. The Central American Cold Surge: An Observational Analysis of the Deep Southward Penetration of North American Cold Fronts. Master’s Thesis, Department of Meteorology, Texas A&M University, College Station, TX, USA, 1992; 177p. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey, W.; Salles, P.; Torres-Freyermuth, A.; Ruíz-Salcines, P.; Teng, Y.-C.; Appendini, C.M.; Quintero-Ibáñez, J. Spatiotemporal Storm Impact on the Northern Yucatan Coast during Hurricanes and Central American Cold Surge Events. J. Mar. Sci. Eng. 2020, 8, 2. https://doi.org/10.3390/jmse8010002
Rey W, Salles P, Torres-Freyermuth A, Ruíz-Salcines P, Teng Y-C, Appendini CM, Quintero-Ibáñez J. Spatiotemporal Storm Impact on the Northern Yucatan Coast during Hurricanes and Central American Cold Surge Events. Journal of Marine Science and Engineering. 2020; 8(1):2. https://doi.org/10.3390/jmse8010002
Chicago/Turabian StyleRey, Wilmer, Paulo Salles, Alec Torres-Freyermuth, Pablo Ruíz-Salcines, Yi-Cheng Teng, Christian M. Appendini, and Julián Quintero-Ibáñez. 2020. "Spatiotemporal Storm Impact on the Northern Yucatan Coast during Hurricanes and Central American Cold Surge Events" Journal of Marine Science and Engineering 8, no. 1: 2. https://doi.org/10.3390/jmse8010002
APA StyleRey, W., Salles, P., Torres-Freyermuth, A., Ruíz-Salcines, P., Teng, Y.-C., Appendini, C. M., & Quintero-Ibáñez, J. (2020). Spatiotemporal Storm Impact on the Northern Yucatan Coast during Hurricanes and Central American Cold Surge Events. Journal of Marine Science and Engineering, 8(1), 2. https://doi.org/10.3390/jmse8010002