Testing A Methodology to Assess Fluctuations of Coastal Rocks Surface Temperature
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Temperature Change during the Day
4.2. Temperature vs. Distance from Shoreline
4.3. Temperature Range
5. Discussion
6. Conclusions
- -
- Overall temperature was minimum at dawn, reached its peak value shortly after sun culmination and then underwent a small-gradient decrease until sunset;
- -
- In connection with temporary sun-shading and wind gusts relevant short-term rock surface temperature fluctuations occurred;
- -
- The entity of measured daily temperature fluctuations is ca. one order of magnitude greater than air temperature fluctuations measured at the same elevation in the closest meteorological station;
- -
- Mean daily temperature proved to be positively correlated with distance from the shoreline;
- -
- The amplitude of daily temperature range progressively increased moving farther from the shoreline.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huggett, R.J. Fundamentals of Gepmorphology; Routledge: London, UK; New York, NY, USA, 2007. [Google Scholar]
- Ollier, C. Weathering, 2nd ed.; Longman: London, UK, 1984; p. 270. [Google Scholar]
- McKay, C.P.; Molaro, J.L.; Marinova, M.M. High-frequency rock temperature data from hyper-arid desert environments in the Atacama and the Antarctic Dry Valleys and implications for rock weathering. Geomorphology 2009, 110, 182–187. [Google Scholar] [CrossRef]
- Hall, K. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 1999, 31, 47–63. [Google Scholar] [CrossRef]
- Hall, K.; Hall, A. Thermal gradients and rock weathering at low temperatures: Some simulation data. Permafr. Periglac. Process. 1991, 2, 103–112. [Google Scholar] [CrossRef]
- Hall, K.; Staffan-Lindgren, B.; Jackson, P. Rock albedo and monitoring of thermal conditions in respect of weathering: Some expected and some unexpected results. Earth Surf. Process. Landf. 2005, 30, 801–811. [Google Scholar] [CrossRef]
- Viles, H.; Ehlmann, B.; Cebula, T.; Wilson, C.; Mol, L.; Bourke, M. Simulating physical weathering of basalt on Earth and Mars. In Proceedings of the Goldsmiths Conference Abstracts 2007, Cologne, Germany, 19–24 August 2007; Available online: http://eprints.uwe.ac.uk/29466 (accessed on 20 June 2019).
- Sunamura, T. Geomorphology of Rocky Coasts; John Wiley Sons: Chichester, UK, 1992. [Google Scholar]
- Martini, P.I. Tafoni weathering with examples from Tuscany, Italy. Z. Für Geomorphol. 1978, 22, 44–67. [Google Scholar]
- Coombes, M.A.; Naylor, L.A. Rock warming and drying under simulated intertidal conditions, part II: Weathering and biological influences on evaporative cooling and near-surface micro-climatic conditions as an example of biogeomorphic ecosystem engineering. Earth Surf. Process. Landf. 2012, 37, 100–118. [Google Scholar] [CrossRef]
- Moses, C.; Robinson, D.; Barlow, J. Methods for measuring rock surface weathering and erosion: A critical review. Earth-Sci. Rev. 2014, 135, 141–161. [Google Scholar] [CrossRef]
- Coombes, M.A. Rock warming and drying under simulated intertidal conditions, Part I: Experimental procedures and comparisons with field data. Earth Surf. Process. Landf. 2011, 36, 2114–2121. [Google Scholar] [CrossRef]
- Coombes, M.A.; Viles, H.A.; Naylor, L.A.; La Marca, E.C. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete? Sci. Total Environ. 2017, 580, 1034–1045. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Kennedy, D.M.; Stephenson, W.J. Hourly to daily-scale microtopographic fluctuations of supratidal sandstone. Earth Surf. Process. Landf. 2018, 43, 3142–3151. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Thermal Infrared Remote Sensing. Sensors, Methods, Applications; Springer: Dordrecht, The Netherlands, 2013; p. 537. [Google Scholar] [CrossRef]
- Falorni, P. Macigno. Carta Geologica d’Italia 1:50.000-Catalogo delle formazioni. I; Servizio Geologico d’Italia: Rome, Italy, 2007; Volume 7, pp. 281–289. [Google Scholar]
- Pappalardo, M.; Maggi, E.; Geppini, C.; Pannacciulli, F. Bioerosive and bioprotective role of barnacles on rocky shores. Sci. Total Environ. 2018, 619–620, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, M.; Cappietti, L.; Arozarena Llopis, I.; Chelli, A.; de Fabritis, L. Development of shore platforms along the NW Coast of Italy: The role of wind waves. J. Coast. Res. 2017, 33, 1102–1112. [Google Scholar] [CrossRef]
- Bland, J.; Rolls, D. Weathering: An Introduction to the Scientific Principles; Routledge: Oxford, UK, 1998; p. 261. [Google Scholar]
- Yatsu, E. The Nature of Weathering: An Introduction; Overseas distributor Maruzen Co: Sozosha, Tokyo, 1988; Volume 13, p. 624. [Google Scholar]
- Warke, P.A.; Smith, B.J. Short-Term Rock Temperature Fluctuations under Simulated Hot Desert Conditions: Some Preliminary Data; Robinson, D.A., Williams, R.B.G., Eds.; Rock Weathering and Landform Evolution; Wiley: Chichester, UK, 1994; pp. 57–70. [Google Scholar]
- McGreevy, J.P. Thermal rock properties as controls on rock surface temperature maxima, and possible implications for rock weathering. Earth Surf. Process. Landf. 1985, 10, 125–136. [Google Scholar] [CrossRef]
- Hall, K.; André, M.-F. New insights into rock weathering from high-frequency rock temperature data: An Antarctic study of weathering by thermal stress. Geomorphology 2001, 41, 23–35. [Google Scholar] [CrossRef]
- Gόmez-Heras, M.; Smith, B.J.; Fort, R. Surface temperature differences between minerals in crystalline rocks: Implications for granular disaggregation of granites through thermal fatigue. Geomorphology 2006, 78, 236–249. [Google Scholar] [CrossRef]
- McFadden, L.D.; Eppes, M.C.; Gillespie, A.R.; Hallet, B. Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. GSA Bull. 2005, 117, 161–173. [Google Scholar] [CrossRef]
- Coombes, M.A.; Naylor, L.A.; Viles, H.A.; Thompson, R.C. Bioprotection and disturbance: Seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone. Geomorphology 2013, 202, 4–14. [Google Scholar] [CrossRef]
- Pappalardo, M.; Buehler, M.; Chelli, A.; Cironi, L.; Pannacciulli, F.; Qin, Z. Quantitative estimates of bio-remodeling on coastal rock surfaces. J. Mar. Sci. Eng. 2016, 4, 37. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappalardo, M.; D’Olivo, M. Testing A Methodology to Assess Fluctuations of Coastal Rocks Surface Temperature. J. Mar. Sci. Eng. 2019, 7, 315. https://doi.org/10.3390/jmse7090315
Pappalardo M, D’Olivo M. Testing A Methodology to Assess Fluctuations of Coastal Rocks Surface Temperature. Journal of Marine Science and Engineering. 2019; 7(9):315. https://doi.org/10.3390/jmse7090315
Chicago/Turabian StylePappalardo, Marta, and Martina D’Olivo. 2019. "Testing A Methodology to Assess Fluctuations of Coastal Rocks Surface Temperature" Journal of Marine Science and Engineering 7, no. 9: 315. https://doi.org/10.3390/jmse7090315
APA StylePappalardo, M., & D’Olivo, M. (2019). Testing A Methodology to Assess Fluctuations of Coastal Rocks Surface Temperature. Journal of Marine Science and Engineering, 7(9), 315. https://doi.org/10.3390/jmse7090315