Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fernandez-Gonzalez, V.; Sanchez-Jerez, P. Fouling assemblages associated with off-coast aquaculture facilities: An overall assessment of the Mediterranean Sea. Mediterr. Mar. Sci. 2017, 18, 87–96. [Google Scholar] [CrossRef]
- Collective Research on Aquaculture Biofouling (COLL-CT-2003-500536-CRABCRAB Project). Available online: https://www.crabproject.com (accessed on 28 June 2019).
- Trujillo, P.; Piroddi, C.; Jacquet, J. Fish Farms at Sea: The Ground Truth from Google Earth. PLoS ONE 2012, 7, e30546. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Lazaro, C.; Marin, A. Assessment of finfish aquaculture impact on the benthic communities in the Mediterranean sea. In Aquaculture I. Dynamic Biochemistry, Process Biotechnology and Molecular Biology; 2 (special issue 1); Russo, R., Ed.; Global Science Books: Ikenobe, Japan, 2008; pp. 21–32. [Google Scholar]
- Martinez-Garcia, E.; Sundstein Carlsson, M.; Sanchez-Jerez, P.; Sánchez-Lizaso, J.L.; Sanz-Lazaro, C.; Holmer, M. Effect of sediment grain size and bioturbation on descomposition of organic matter from aquaculture. Biogeochemistry 2015, 125, 133–148. [Google Scholar] [CrossRef]
- Soetaert, K.; Herman, P.M.J.; Heip, C.H.R.; Middelburg, J.J. Denitrification in marine sediments: A model study. Glob. Biogeochem. Cycles 1996, 10, 661–673. [Google Scholar]
- Sanz-Lázaro, C.; Marín, A. Diversity Patterns of Benthic Macrofauna Caused by Marine Fish Farming. Diversity 2011, 3, 176–199. [Google Scholar] [CrossRef]
- Wilding, T.A. Changes in Sedimentary Redox Associated with Mussel (Mytilus edulis L.) Farms on the West-Coast of Scotland. PLoS ONE 2012, 7, e45159. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.L.; Jones, C.G.; Strayer, D.L.; Iribarne, O.O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 2003, 101, 79–90. [Google Scholar] [CrossRef]
- Casado-Coy, N.; Martínez-García, E.; Sánchez-Jerez, P.; Sanz-Lázaro, C. Mollusc-shell debris can mitigate the deleterious effects of organic pollution on marine sediments. J. Appl. Ecol. 2017, 54, 547–556. [Google Scholar] [CrossRef]
- Sanchez-Jerez, P.; Karakassis, I. Allowable Zone of Effect for Mediterranean Marine Aquaculture (AZE) (WGSC-SHoCMed). 2011 (GFCM:CAQ/2012/CMWG-5/Inf.11). Available online: http://bit.ly/GFCM-CAQ-AZE-2011 (accessed on 30 June 2019).
- Image, J. An open platform for scientific image analysis. Available online: https://imagej.net/ (accessed on 2 April 2019).
- GAD: Analysis of Variance from General Principles. Available online: https://cran.r-project.org/web/packages/GAD/index.html (accessed on 28 June 2019).
- Fitridge, I.; Dempster, T.; Guenther, J.; De Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef] [PubMed]
- Cromey, C.; Thetmeyer, H.; Lampadariou, N.; Black, K.; Kögeler, J.; Karakassis, I. Meramod: Predicting the deposition and benthic impact of aquaculture in the eastern Mediterranean Sea. Aquac. Environ. Interact. 2012, 2, 157–176. [Google Scholar] [CrossRef]
- Wu, R. The environmental impact of marine fish culture: Towards a sustainable future. Mar. Pollut. Bull. 1995, 31, 159–166. [Google Scholar] [CrossRef]
- Floerl, O.; Sunde, L.; Bloecher, N. Potential environmental risks associated with biofouling management in salmon aquaculture. Aquac. Environ. Interact. 2016, 8, 407–417. [Google Scholar] [CrossRef]
Density (g∙kg−1) | Cover (%) | |||||||
---|---|---|---|---|---|---|---|---|
Source of Variation | df | MS | F | P | df | MS | F | P |
RE’s vs. AZE | 1 | 55680 | 204,903 | <0.002 | 1 | 6.171 | 162.3 | <0.0001 |
RE’s vs. ZI | 1 | 26 | 0.095 | 0.759 | 1 | 0.451 | 11.85 | <0.002 |
RE1 vs. RE2 | 1 | 1 | 0.003 | 0.955 | 1 | 0.067 | 1.760 | 0.191 |
Fish Farm = FF | 2 | 1623 | 5,971 | 0.004 | 1 | 0.142 | 3.747 | 0.058 |
(RE’s vs. AZE) × FF | 2 | 4972 | 18,297 | 0.003 | 1 | 0.002 | 0.048 | 0.827 |
(RE’s vs. ZI) × FF | 2 | 13 | 0.047 | 0.954 | 1 | 0.006 | 0.170 | 0.681 |
(RE1 vs. RE2) × FF | 2 | 1 | 0.003 | 0.997 | 1 | 0.067 | 1.760 | 0.1909 |
Site (Zone × FF) | 24 | 620 | 2,281 | <0.004 | 16 | 0.616 | 16.209 | <0.0001 |
Residuals | 72 | 271 | 48 | 0.038 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Jerez, P.; Krüger, L.; Casado-Coy, N.; Valle, C.; Sanz-Lazaro, C. Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. J. Mar. Sci. Eng. 2019, 7, 335. https://doi.org/10.3390/jmse7100335
Sanchez-Jerez P, Krüger L, Casado-Coy N, Valle C, Sanz-Lazaro C. Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. Journal of Marine Science and Engineering. 2019; 7(10):335. https://doi.org/10.3390/jmse7100335
Chicago/Turabian StyleSanchez-Jerez, Pablo, Lotte Krüger, Nuria Casado-Coy, Carlos Valle, and Carlos Sanz-Lazaro. 2019. "Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming" Journal of Marine Science and Engineering 7, no. 10: 335. https://doi.org/10.3390/jmse7100335
APA StyleSanchez-Jerez, P., Krüger, L., Casado-Coy, N., Valle, C., & Sanz-Lazaro, C. (2019). Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. Journal of Marine Science and Engineering, 7(10), 335. https://doi.org/10.3390/jmse7100335