Fault-Tolerant Trajectory Tracking Control for a Differential-Driven Unmanned Surface Vehicle with Propeller Faults
Abstract
1. Introduction
2. Problem Formulation
2.1. USV Dynamics
2.2. DC Motor-Powered Propeller Model
2.3. Propeller Faults
2.4. Control Objective
3. Main Results
3.1. Control Laws
3.2. Stability Analysis
4. Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, P.; Xue, J.; Hu, H. A bibliometric analysis and overall review of the new technology and development of unmanned surface vessels. J. Mar. Sci. Eng. 2024, 12, 146. [Google Scholar] [CrossRef]
- Chang, Z.; Zong, G.; Wang, W.; Yue, M.; Zhao, X. formation control and obstacle avoidance design for networked USV swarm with exogenous disturbance under intermittent communication. IEEE Trans. Netw. Sci. Eng. 2025, 12, 3234–3243. [Google Scholar] [CrossRef]
- Gao, X.; Hu, X.; Peng, Z.; Li, T. Reinforcement learning-based dynamic event-triggered optimal trajectory tracking for USVs under unknown disturbances. Ocean Eng. 2025, 340, 122165. [Google Scholar] [CrossRef]
- Wen, G.; Fang, X.; Zhou, J.; Zhou, J. Robust formation tracking of multiple autonomous surface vessels with individual objectives: A noncooperative game-based approach. Control Eng. Pract. 2022, 119, 104975. [Google Scholar] [CrossRef]
- Song, W.; Zuo, Y.; Tong, S. Optimal fuzzy output feedback tracking control for unmanned surface vehicles systems. Ocean Eng. 2024, 296, 117034. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Tong, S. Adaptive neural optimal tracking control for uncertain unmanned surface vehicle. Ocean Eng. 2024, 312, 119031. [Google Scholar] [CrossRef]
- Liu, S.; Li, T.; Wang, H. Adaptive neural dynamic surface composite control for path following of underactuated vessels with fixed-time convergence. Ocean Eng. 2023, 287, 115867. [Google Scholar] [CrossRef]
- Do, K.D.; Pan, Y. Global robust adaptive path following of underactuated ships. Automatica 2006, 42, 1713–1722. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, T.; Chai, T. Neural network control of underactuated surface vehicles with prescribed trajectory tracking performance. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 8026–8039. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, Z.; Wu, Y.; Xiang, J.; Li, Y. Energy-based trajectory tracking control of under-actuated unmanned surface vessels. Ocean Eng. 2023, 288, 116166. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Y.; Huang, B.; Su, Y. Finite-time trajectory tracking control for under-actuated unmanned surface vessels with saturation constraint. Ocean Eng. 2022, 249, 110745. [Google Scholar] [CrossRef]
- Yoerger, D.; Cooke, J.; Slotine, J.J. The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE J. Ocean. Eng. 1990, 15, 167–178. [Google Scholar] [CrossRef]
- Healey, A.J.; Rock, S.M.; Cody, S.; Miles, D.; Brown, J.P. Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE J. Ocean. Eng. 1995, 20, 354–361. [Google Scholar] [CrossRef]
- Fossen, T.; Blanke, M. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity. IEEE J. Ocean. Eng. 2000, 25, 241–255. [Google Scholar] [CrossRef]
- Peng, Z.; Meng, C.; Liu, L.; Wang, D.; Li, T. PWM-driven model predictive speed control for an unmanned surface vehicle with unknown propeller dynamics based on parameter identification and neural prediction. Neurocomputing 2021, 432, 1–9. [Google Scholar] [CrossRef]
- Xu, Z.; Han, T.; Zhou, W.; He, S.; Xiang, J. Trajectory tracking control for differential-driven unmanned surface vessels considering propeller servo loop. IEEE Trans. Ind. Inf. 2024, 20, 3847–3856. [Google Scholar] [CrossRef]
- Su, Y.; Teng, F.; Li, T.; Sun, Q. Adaptive prescribed-time tracking control for an unmanned surface vehicle considering motor-driven propellers. IEEE Trans. Ind. Inf. 2025, 21, 1665–1673. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, H.; Guo, G.; Li, H.; Xiang, J. Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated with a unified model. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2012–2026. [Google Scholar] [CrossRef]
- Li, Y.; Feng, K.; Li, K. Finite-time fuzzy adaptive dynamic event-triggered formation tracking control for USVs with actuator faults and multiple constraints. IEEE Trans. Ind. Inf. 2024, 20, 5285–5296. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G. Fault-tolerant fixed-time trajectory tracking control of autonomous surface vessels with specified accuracy. IEEE Trans. Ind. Electron. 2020, 67, 4889–4899. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Han, Q. Adaptive fault-tolerant trajectory tracking control of twin-propeller non-rudder unmanned surface vehicles. Ocean Eng. 2023, 285, 115294. [Google Scholar] [CrossRef]
- Yang, X.; Hao, L.; Li, T.; Xiao, Y. Dynamic positioning control for unmanned marine vehicles with thruster faults and time delay: A Lyapunov matrix-based method. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 4019–4030. [Google Scholar] [CrossRef]
- Park, B.; Yoo, S. Robust fault-tolerant tracking with predefined performance for underactuated surface vessels. Ocean Eng. 2016, 115, 159–167. [Google Scholar] [CrossRef]
- Wu, W.; Tong, S. Adaptive fuzzy distributed optimal FTC for nonlinear multiagent systems based multiplayer differential game. IEEE Trans. Fuzzy Syst. 2025, 33, 657–668. [Google Scholar] [CrossRef]
- Li, Z.; An, T.; Dong, B.; Yuan, X. Event-triggered V2V communication-based cooperative adaptive tracking control for nonlinear vehicle platoon systems with unknown lag time. Nonlinear Dyn. 2025, 113, 519–532. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Q.; Li, H.; Yao, D.; Ahn, C.K. Event-triggered state estimation and control for networked nonlinear systems under dynamic sparse attacks. IEEE Trans. Netw. Sci. Eng. 2024, 11, 1947–1958. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Q.; Ren, H.; Li, H. Sensor-fusion-based event-triggered following control for nonlinear autonomous vehicles under sensor attacks. IEEE Trans. Autom. Sci. Eng. 2025, 22, 17411–17420. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, L.; Liu, Y. Adaptive neural control for a network of parabolic PDEs with event-triggered mechanism. IEEE Trans. Parallel Distrib. Syst. 2024, 35, 1320–1330. [Google Scholar] [CrossRef]
- Liang, H.; Guo, X.; Pan, Y.; Huang, T. Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers. IEEE Trans. Fuzzy Syst. 2021, 29, 1601–1614. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G. Fault-tolerant leader-follower formation control of marine surface vessels with unknown dynamics and actuator faults. Int. J. Robust Nonlinear Control. 2018, 28, 4188–4208. [Google Scholar] [CrossRef]
Symbol | Interpretation |
---|---|
x | Surge displacement (m) |
y | Sway displacement (m) |
Yaw angle (rad) | |
u | Surge speed (m/s) |
v | Sway speed (m/s) |
r | Yaw rate (rad/s) |
Shaft speeds of motors (rpm) | |
USV inertia including added mass (kg) | |
Linear damping coefficients (kg/s) | |
Nonlinear damping coefficients (kg/m) | |
Surge force (N) | |
Yaw moment (N·m) | |
Supply voltage (V) | |
Transfer coefficients from voltage to rotational speed (rad/(s·V)) | |
Transfer coefficients from load torque to rotational speed (rad/(s·N·m)) | |
Density of water () | |
Port and starboard propeller diameter (m) | |
Thrust reduction factors (-) | |
w | Wake fraction number (-) |
Moment of inertia for motors () | |
Duty cycles of PWM signals (-) | |
Actuation effectiveness of two propellers (-) | |
Floating faults (-) |
Symbol | Interpretation |
---|---|
Position error (m) | |
Surge and sway displacement errors (m) | |
Barrier function to manage the control coefficient in sway (-) | |
Surge speed tracking error (m/s) | |
Yaw rate tracking error (rad/s) | |
Motor shaft speed errors (rpm) | |
Sway and surge control gain functions of position error dynamics (-) | |
Virtual and filtered surge speed control laws (m/s) | |
Virtual and filtered yaw rate control laws (rad/s) | |
Control gain function of orientation regulation dynamics (-) | |
Intermediate surge force control law (N) | |
Intermediate yaw moment control law (N·m) | |
Surge force control law (N) | |
Yaw moment control law (N·m) | |
Duty cycle control laws of two motors (-) | |
Gain design parameters of control laws (-) | |
Learning rate design parameters of adaptive laws (-) | |
Anti-saturation auxiliary variables (-) | |
Small predefined positive constant to avoid singularity (-) |
Case | Unhealthy Propellers | Fault Occurrence |
---|---|---|
1 | Port propeller | Lose 80% effectiveness; |
2 | Starboard propeller | 40 s, Lose 70% effectiveness; |
3 | Twin propellers | 20 s, Lose 20% effectiveness (port); 30 s, Lose 60% effectiveness (starboard); ; |
Metric | Under Fault-Tolerant Control | Under Non-Fault-Tolerant Control |
---|---|---|
Average position error | 0.9915/m | 3.095/m |
Performance recovery capability | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Yu, R.; Tang, W.; Li, T. Fault-Tolerant Trajectory Tracking Control for a Differential-Driven Unmanned Surface Vehicle with Propeller Faults. J. Mar. Sci. Eng. 2025, 13, 1592. https://doi.org/10.3390/jmse13081592
Su Y, Yu R, Tang W, Li T. Fault-Tolerant Trajectory Tracking Control for a Differential-Driven Unmanned Surface Vehicle with Propeller Faults. Journal of Marine Science and Engineering. 2025; 13(8):1592. https://doi.org/10.3390/jmse13081592
Chicago/Turabian StyleSu, Yuanbo, Renhai Yu, Wanyu Tang, and Tieshan Li. 2025. "Fault-Tolerant Trajectory Tracking Control for a Differential-Driven Unmanned Surface Vehicle with Propeller Faults" Journal of Marine Science and Engineering 13, no. 8: 1592. https://doi.org/10.3390/jmse13081592
APA StyleSu, Y., Yu, R., Tang, W., & Li, T. (2025). Fault-Tolerant Trajectory Tracking Control for a Differential-Driven Unmanned Surface Vehicle with Propeller Faults. Journal of Marine Science and Engineering, 13(8), 1592. https://doi.org/10.3390/jmse13081592