Machine Learning Beach Attendance Forecast Modelling from Automatic Video-Derived Counting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. The Beaches of Southwest France: General Settings
2.1.2. Video-Monitoring Sites of Biscarrosse and Vielle Saint-Girons
2.1.3. Environmental Data
2.2. Automatic Video-Derived Beach Attendance Estimation
2.2.1. Method
2.2.2. Validation with Lifeguard Estimates
2.3. Beach Attendance Forecast Model
2.3.1. Data
2.3.2. XGBoost Modelling
3. Results
4. Discussion
4.1. Environmental Controls on Beach User Count
4.2. Limitations
4.3. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucrezi, S.; van der Walt, M.F. Beachgoers’ perceptions of sandy beach conditions: Demographic and attitudinal influences, and the implications for beach ecosystem management. J. Coast. Conserv. 2016, 20, 81–96. [Google Scholar] [CrossRef]
- Morgan, D. Counting Beach Visitors: Tools, Methods and Management Applications. In Beach Management Tools—Concepts, Methodologies and Case Studies; Botero, C.M., Cervantes, O., Finkl, C.W., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 561–577. [Google Scholar] [CrossRef]
- Ghermandi, A.; Nunes, P.A. A global map of coastal recreation values: Results from a spatially explicit meta-analysis. Ecol. Econ. 2013, 86, 1–15. [Google Scholar] [CrossRef]
- Houston, J.R. The economic value of America’s beaches. Shore & Beach 2024, 92, 33–43. [Google Scholar] [CrossRef]
- Stokes, C.; Masselink, G.; Revie, M.; Scott, T.; Purves, D.; Walters, T. Application of multiple linear regression and Bayesian belief network approaches to model life risk to beach users in the UK. Ocean. Coast. Manag. 2017, 139, 12–23. [Google Scholar] [CrossRef]
- de Korte, E.; Castelle, B.; Tellier, E. A Bayesian network approach to modelling rip-current drownings and shore-break wave injuries. Nat. Hazards Earth Syst. Sci. 2021, 21, 2075–2091. [Google Scholar] [CrossRef]
- MacMahan, J.H.; Thornton, E.B.; Reniers, A.J.H.M. Rip current review. Coast. Eng. 2006, 53, 191–208. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; MacMahan, J.H.; Reniers, A.J.; Nelko, V. Rip Currents. Annu. Rev. Fluid Mech. 2011, 43, 551–581. [Google Scholar] [CrossRef]
- Castelle, B.; Scott, T.; Brander, R.; McCarroll, R. Rip current types, circulation and hazard. Earth Sci. Rev. 2016, 163, 1–21. [Google Scholar] [CrossRef]
- Houser, C.; Wernette, P.; Trimble, S.; Locknick, S. 11—Rip currents. In Sandy Beach Morphodynamics; Jackson, D.W., Short, A.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 255–276. [Google Scholar] [CrossRef]
- Chang, S.K.Y.; Tominaga, G.T.; Wong, J.H.; Weldon, E.J.; Kaan, K.T. Risk factors for water sports-related cervical spine injuries. J. Trauma 2006, 60, 1041–1046. [Google Scholar] [CrossRef]
- Barlas, B.; Beji, S. Rip current fatalities on the Black Sea beaches of Istanbul and effects of cultural aspects in shaping the incidents. Nat. Hazards 2016, 80, 811–821. [Google Scholar] [CrossRef]
- Puleo, J.; Hutschenreuter, K.; Cowan, P.; Carey, W.; Arford-Granholm, M.; McKenna, K. Delaware surf zone injuries and associated environmental conditions. Nat. Hazards 2016, 81, 845–867. [Google Scholar] [CrossRef]
- Castelle, B.; Dehez, J.; Savy, J.P.; Marieu, V.; Lyser, S.; Bujan, S.; Carayon, D.; Brander, R. Environmental controls on lifeguard-estimated surf-zone hazards, beach crowds, and resulting life risk at a high-energy sandy beach in southwest France. Nat. Hazards: J. Int. Soc. Prev. Mitig. Nat. Hazards 2024, 120, 1557–1576. [Google Scholar] [CrossRef]
- Dusek, G.; Seim, H.; Hanson, J.L.; Elder, D.H. Analysis of Rip Current Rescues at Kill Devil Hills, North Carolina. In Rip Currents; Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Brighton, B.; Sherker, S.; Brander, R.; Thompson, M.; Bradstreet, A. Rip current related drowning deaths and rescues in Australia 2004–2011. Nat. Hazards Earth Syst. Sci. 2013, 13, 1069–1075. [Google Scholar] [CrossRef]
- Brewster, B.C.; Gould, R.E.; Brander, R.W. Estimations of rip current rescues and drowning in the United States. Nat. Hazards Earth Syst. Sci. 2019, 19, 389–397. [Google Scholar] [CrossRef]
- Castelle, B.; Brander, R.; Tellier, E.; Simonnet, B.; Scott, T.; McCarroll, J.; Campagne, J.M.; Cavailhes, T.; Lechevrel, P. Surf zone hazards and injuries on beaches in SW France. Nat. Hazards 2018, 93, 1317–1335. [Google Scholar] [CrossRef]
- Robbles, L. Cervical spine injuries in ocean bathers: Wave-related accidents. Neurosurgery 2006, 58, 920–923. [Google Scholar] [CrossRef]
- Thom, O.; Roberts, K.; Leggat, P.A.; Devine, S.; Peden, A.E.; Franklin, R.C. Cervical spine injuries occurring at the beach: Epidemiology, mechanism of injury and risk factors. BMC Public Health 2022, 22, 1404. [Google Scholar] [CrossRef]
- Austin, M.; Scott, T.M.; Brown, J.W.; Brown, J.A.; MacMahan, J.H.; Masselink, G.; Russell, P. Temporal observations of rip current circulation on a macro-tidal beach. Cont. Shelf. Res. 2010, 30, 1149–1165. [Google Scholar] [CrossRef]
- Stokes, C.; Poate, T.; Masselink, G.; Scott, T.; Instance, S. New insights into combined surfzone, embayment, and estuarine bathing hazards. Nat. Hazards Earth Syst. Sci. 2024, 24, 4049–4074. [Google Scholar] [CrossRef]
- Dusek, G.; Seim, H. Rip Current Intensity Estimates from Lifeguard Observations. J. Coast. Res. 2012, 29, 505–518. [Google Scholar] [CrossRef]
- Dusek, G.; Seim, H. A probabilistic rip current forecast model. J. Coast. Res. 2013, 29, 909–925. [Google Scholar] [CrossRef]
- Casper, A.; Nuss, E.S.; Baker, C.M.; Moulton, M.; Dusek, G. Assessing NOAA Rip-Current Hazard Likelihood Predictions: Comparison with Lifeguard Observations and Parameterizations of Bathymetric and Transient Rip-Current Types. Weather. Forecast. 2024, 39, 1045–1063. [Google Scholar] [CrossRef]
- Castelle, B.; Dehez, J.; Savy, J.P.; Liquet, S.; Carayon, D. Physics-based forecast modelling of rip-current and shore-break wave hazards. Nat. Hazards Earth Syst. Sci. Discuss. 2024. [preprint], in review. [Google Scholar] [CrossRef]
- Dwight, R.H.; Brinks, M.V.; SharavanaKumar, G.; Semenza, J.C. Beach attendance and bathing rates for Southern California beaches. Ocean Coast. Manage. 2007, 50, 847–858. [Google Scholar] [CrossRef]
- Ibarra, E. The use of webcam images to determine tourist-climate aptitude: Favourable weather types for sun and beach tourism on the Alicante coast (Spain). Int. J. Biometeorol. 2011, 55, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Coombes, E.; Jones, A.P.; Bateman, I.; Tratalos, J.; Gill, J.; Showler, D.; Watkinson, A.; Sutherland, W. Spatial and temporal modeling of beach use: A case study of east Anglia, UK. Coast. Manag. 2009, 37, 94–115. [Google Scholar] [CrossRef]
- Kane, B.; Zajchowski, C.A.; Allen, T.R.; McLeod, G.; Allen, N.H. Is it safer at the beach? Spatial and temporal analyses of beachgoer behaviors during the COVID-19 pandemic. Ocean. Coast. Manag. 2021, 205, 105533. [Google Scholar] [CrossRef]
- Tellier, E.; Simonnet, B.; Gil-Jardiné, C.; Lerouge-Bailhache, M.; Castelle, B.; Salmi, R. Predicting drowning from sea and weather forecasts: Development and validation of a model on surf beaches of southwestern France. Inj. Prev. 2022, 28, 16–22. [Google Scholar] [CrossRef]
- Bustos, M.L.; Zilio, M.I.; Ferrelli, F.; Piccolo, M.C.; Perillo, G.M.; Van Waarde, G.; Manstretta, G.M.M. Tourism in the COVID-19 context in mesotidal beaches: Carrying capacity for the 2020/2021 summer season in Pehuén Co, Argentina. Ocean. Coast. Manag. 2021, 206, 105584. [Google Scholar] [CrossRef]
- Provost, E.J.; Coleman, M.A.; Butcher, P.A.; Colefax, A.; Schlacher, T.A.; Bishop, M.J.; Connolly, R.M.; Gilby, B.L.; Henderson, C.J.; Jones, A.; et al. Quantifying human use of sandy shores with aerial remote sensing technology: The sky is not the limit. Ocean. Coast. Manag. 2021, 211, 105750. [Google Scholar] [CrossRef]
- Teles da Mota, V.; Pickering, C.; Chauvenet, A. Popularity of Australian beaches: Insights from social media images for coastal management. Ocean. Coast. Manag. 2022, 217, 106018. [Google Scholar] [CrossRef]
- Guillén, J.; García-Olivares, A.; Ojeda, E.; Osorio, A.; Chic, O.; González, R. Long-term quantification of beach users using video monitoring. J. Coast. Res. 2008, 24, 1612–1619. [Google Scholar] [CrossRef]
- Balouin, Y.; Rey-Valette, H.; Picand, P.A. Automatic assessment and analysis of beach attendance using video images at the Lido of Sète beach, France. Ocean. Coast. Manag. 2014, 102, 114–122. [Google Scholar] [CrossRef]
- Domingo, M.C. Deep Learning and Internet of Things for Beach Monitoring: An Experimental Study of Beach Attendance Prediction at Castelldefels Beach. Appl. Sci. 2021, 11, 10735. [Google Scholar] [CrossRef]
- Johnston-González, R.; Adarraga, E.; Coca, O.; Correa, M.; de la Hoz, E.; Legarda, G.; Navarro, J.; Ramírez, M.; Rozo, A.; Ricaurte-Villota, C. Artificial intelligence for beach monitoring: An experimental study of beach attendance at El Rodadero, Colombia. Ocean. Coast. Manag. 2024, 253, 107159. [Google Scholar] [CrossRef]
- Sempere-Tortosa, M.; Toledo, I.; Marcos-Jorquera, D.; Carbonell, D.; Gilart-Iglesias, V.; Aragonés, L. A new occupancy index model based on artificial vision for enhancing beach management. J. Environ. Manag. 2024, 370, 122675. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Res. 2022, 219, 118532. [Google Scholar] [CrossRef]
- Hasan, M.H.; Ahmed, A.; Nafee, K.; Hossen, M.A. Use of machine learning algorithms to assess flood susceptibility in the coastal area of Bangladesh. Ocean. Coast. Manag. 2023, 236, 106503. [Google Scholar] [CrossRef]
- Bossard, V.; Nicolae Lerma, A. Geomorphologic characteristics and evolution of managed dunes on the South West Coast of France. Geomorphology 2020, 367, 107312. [Google Scholar] [CrossRef]
- Nicolae Lerma, A.; Castelle, B.; Marieu, V.; Robinet, A.; Bulteau, T.; Bernon, N.; Mallet, C. Decadal beach-dune profile monitoring along a 230-km high-energy sandy coast: Aquitaine, southwest France. Appl. Geogr. 2022, 139, 102645. [Google Scholar] [CrossRef]
- Brumaud, S. Saison Touristique 2015 en Aquitaine—La fréQuentation des Hôtels et Campings au Beau Fixe in French; INSEE Analyses Nouvelle-Aquitaine: Poitiers, France, 2016. [Google Scholar]
- Senechal, N.; Coco, G.; Castelle, B.; Marieu, V. Storm impact on the seasonal shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). Geomorphology 2015, 228, 448–461. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [Google Scholar] [CrossRef]
- Dehez, J.; Lyser, S.; Castelle, B.; Brander, R.W.; Peden, A.E.; Savy, J.P. Investigating beachgoer’s perception of coastal bathing risks in southwest France. Nat. Hazards 2024, 120, 13209–13230. [Google Scholar] [CrossRef]
- Tolman, H.L.; Balasubramaniyan, B.; Burroughs, L.D.; Chalikov, D.; Chao, Y.Y.; Chen, H.S.; Gerald, V.M. Development and Implementation of Wind-Generated Ocean Surface Wave Modelsat NCEP. Weather. Forecast. 2002, 17, 311–333. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, D.; Song, T.; Ye, Y.; Zhang, X.; Song, Y. Improved YOLOv7 models based on modulated deformable convolution and swin transformer for object detection in fisheye images. Image Vis. Comput. 2024, 144, 104966. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar] [CrossRef]
- Moreno, A.; Amelung, B.; Santamarta, L. Linking Beach Recreation to Weather Conditions: A Case Study in Zandvoort, Netherlands. Tour. Mar. Environ. 2008, 5, 111–119. [Google Scholar] [CrossRef]
- R.-Toubes, D.; Araújo-Vila, N.; Fraiz-Brea, J.A. Influence of Weather on the Behaviour of Tourists in a Beach Destination. Atmosphere 2020, 11, 121. [Google Scholar] [CrossRef]
- Dehez, J.; Lyser, S.; Castelle, B. Predicting individual’s decision to enter the water at a high-energy recreational surf beach in France. Inj. Prev. 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelle, B.; Carayon, D.; Dehez, J.; Liquet, S.; Marieu, V.; Sénéchal, N.; Lyser, S.; Savy, J.-P.; Barneix, S. Machine Learning Beach Attendance Forecast Modelling from Automatic Video-Derived Counting. J. Mar. Sci. Eng. 2025, 13, 1181. https://doi.org/10.3390/jmse13061181
Castelle B, Carayon D, Dehez J, Liquet S, Marieu V, Sénéchal N, Lyser S, Savy J-P, Barneix S. Machine Learning Beach Attendance Forecast Modelling from Automatic Video-Derived Counting. Journal of Marine Science and Engineering. 2025; 13(6):1181. https://doi.org/10.3390/jmse13061181
Chicago/Turabian StyleCastelle, Bruno, David Carayon, Jeoffrey Dehez, Sylvain Liquet, Vincent Marieu, Nadia Sénéchal, Sandrine Lyser, Jean-Philippe Savy, and Stéphanie Barneix. 2025. "Machine Learning Beach Attendance Forecast Modelling from Automatic Video-Derived Counting" Journal of Marine Science and Engineering 13, no. 6: 1181. https://doi.org/10.3390/jmse13061181
APA StyleCastelle, B., Carayon, D., Dehez, J., Liquet, S., Marieu, V., Sénéchal, N., Lyser, S., Savy, J.-P., & Barneix, S. (2025). Machine Learning Beach Attendance Forecast Modelling from Automatic Video-Derived Counting. Journal of Marine Science and Engineering, 13(6), 1181. https://doi.org/10.3390/jmse13061181