Benthic Mollusk Biodiversity Correlates with Polluted Sediment Conditions in a Shallow Subtropical Estuary
Abstract
:1. Introduction
- (1)
- There is an inverse relationship between ecological diversity (measured as biodiversity via the Shannon–Weiner Index), species richness, abundance of mollusks, and sediment percent organic content.
- (2)
- Removal of sediments with high concentrations of fine-grained organic matter by dredging will increase the biodiversity, species richness, and abundances of benthic mollusks.
2. Materials and Methods
2.1. Location and Seasons
2.2. Sample Collection
2.3. Laboratory Analysis
2.4. Data Analysis
3. Results
3.1. Presence and Absence of Species
3.2. Relationship Between Mollusk Abundance, Species Richness, and Biodiversity and Sediment Contents
3.3. Multivariate Analysis
4. Discussion
4.1. Relationship Between Mollusk Biodiversity, Species Richness, and Abundance and Sediment Organic Content
4.2. Impacts of Dredging on Benthic Mollusk Community Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bricker, S.B.; Longstaff, B.; Dennison, W.; Jones, A.; Boicourt, K.; Wicks, C.; Woerner, J. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae 2008, 8, 21–32. [Google Scholar] [CrossRef]
- Mallick, N.; Johnson, K.B.; Jacoby, C.A. The Effect of Environmental Dredging of Muck on an Assemblage of Benthi Amphipods. J. Mar. Sci. Eng. 2023, 11, 444. [Google Scholar] [CrossRef]
- Fox, A.L.; Trefry, J.H. Environmental Dredging to Remove Fine Grained, Organic Rich Sediments and Reduce Inputs of Nitrogen and Phosphorus to a Subtropical Estuary. Mar. Technol. Soc. J. 2018, 52, 42–57. [Google Scholar] [CrossRef]
- Bradshaw, D.J.; Dickens, N.J.; Trefry, J.H.; McCarthy, P.J. Defining the sediment microbiome of the Indian River Lagoon, FL, USA, an Estuary of National Significance. PLoS ONE 2020, 15, e0236305. [Google Scholar] [CrossRef] [PubMed]
- Erftemeijer, P.L.; Lewis, R.R.R., III. Environmental impacts of dredging on seagrasses: A review. Mar. Pollut. Bull. 2006, 52, 1553–1572. [Google Scholar] [CrossRef]
- Donohue, I.; Garcia Molinos, J. Impacts of increased sediment loads on the ecology of lakes. Biol. Rev. 2009, 84, 517–531. [Google Scholar] [CrossRef]
- Trefry, J.H.; Trocine, R.P.; Woodall, D.W. Composition and sources of suspended matter in the Indian River Lagoon, Florida. Fla. Sci. 2007, 70, 363–382. [Google Scholar]
- Nerlović, V.; Doğan, A.; Hrs-Brenko, M. Response to oxygen deficiency (depletion): Bivalve assemblages as an indicator of ecosystem instability in the northern Adriatic Sea. Biologia 2011, 66, 1114. [Google Scholar] [CrossRef]
- Tetra Tech, Inc.; Close Waters LLC. Save Our Lagoon Project Plan for Brevard County, Florida. Report to Brevard County Natural Resources Management Department. 2018. Available online: https://www.brevardfl.gov/SaveOurLagoon/ProjectPlan (accessed on 10 November 2020).
- Cox, A.; Hope, D.; Angelica Zamora-Duran, M.; Johnson, K.B. Environmental Factors Influencing Benthic Polychaete Distributions in a Subtropical Lagoon. Mar. Technol. Soc. J. 2018, 52, 58–74. [Google Scholar] [CrossRef]
- Mikkelsen, P.M.; Mikkelsen, P.S.; Karlen, D.J. Molluscan biodiversity in the Indian River lagoon, Florida. Bull. Mar. Sci. 1995, 57, 94–127. [Google Scholar]
- Fedosov, A.E.; Puillandre, N. Phylogeny and taxonomy of the Kermia Pseudodaphnella (Mollusca: Gastropoda: Raphitomidae) genus complex: A remarkable radiation via diversification of larval development. Syst. Biodivers. 2012, 10, 447–477. [Google Scholar] [CrossRef]
- Parkhaev, P.Y. Origin and the early evolution of the phylum Mollusca. Paleontol. J. 2017, 51, 663–686. [Google Scholar] [CrossRef]
- Coelho, J.P.; Duarte, A.C.; Pardal, M.A.; Pereira, M.E. Scrobicularia plana (Mollusca, Bivalvia) as a biomonitor for mercury contamination in Portuguese estuaries. Ecol. Indic. 2014, 46, 447–453. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lee, S.; Kim, J.; Kim, C.J.; Choi, K.Y.; Chung, C.S. Thyasira tokunagai as an ecological indicator for the quality of sediment and benthic communities in the East Sea-Byeong, Korea. Mar. Pollut. Bull. 2018, 135, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guan, Q.; Lu, X.; Batzer, D.P. Snail (Mollusca: Gastropoda) assemblages as indicators of ecological condition in freshwater wetlands of Northeastern China. Ecol. Indic. 2017, 75, 203–209. [Google Scholar] [CrossRef]
- McKeon, C.S.; Tunberg, B.G.; Johnston, C.A.; Barshis, D.J. Ecological drivers and habitat associations of estuarine bivalves. PeerJ 2015, 3, e1348. [Google Scholar] [CrossRef] [PubMed]
- Moraitis, M.L.; Tsikopoulou, I.; Geropoulos, A.; Dimitriou, P.D.; Papageorgiou, N.; Giannoulaki, M.; Valavanis, V.D.; Karakassis, I. Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling. Mar. Environ. Res. 2018, 140, 10–17. [Google Scholar] [CrossRef]
- Johnson, K.B.; Shenker, J.M.; Trefry, J.H. Muck Removal Efficiency Plus Biological and Chemical Responses/Improvements After Dredging (Subtask 2); Florida Tech: Melbourne, FL, USA, 2019. [Google Scholar]
- Bayne, B.L.; Newell, R.C. Physiological energetics of marine molluscs. In The Mollusca; Academic Press: Cambridge, MA, USA, 1983; pp. 407–515. [Google Scholar]
- Fox, H.M.; Simmonds, B.G. Metabolic rates of aquatic arthropods from different habitats. J. Exp. Biol. 1933, 10, 67–74. [Google Scholar] [CrossRef]
- Pamatmat, M.M. Measuring aerobic and anaerobic metabolism of benthic infauna under natural conditions. J. Exp. Zool. 1983, 228, 405–413. [Google Scholar] [CrossRef]
- Salvato, B.; Cuomo, V.; Di Muro, P.; Beltramini, M. Effects of environmental parameters on the oxygen consumption of four marine invertebrates: A comparative factorial study. Mar. Biol. 2001, 138, 659–668. [Google Scholar] [CrossRef]
- Bayne, B.L. (Ed.) Marine Mussels: Their Ecology and Physiology; Cambridge University Press: Cambridge, UK, 1976; Volume 10. [Google Scholar]
- Theede, H.; Ponat, A.; Hiroki, K.; Schlieper, C. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Mar. Biol. 1969, 2, 325–337. [Google Scholar] [CrossRef]
- Pearson, T.H. Marine pollution effects pulp and paper industry wastes. Helgoländer Meeresunters. 1980, 33, 340. [Google Scholar] [CrossRef]
- Rhoads, D.C.; Young, D.K. The influence of deposit feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 1970, 28, 150–178. [Google Scholar] [CrossRef]
- Hope, D.C. The Tolerance of Benthic Infauna to Fine-Grained Organic Rich Sediments in a Shallow Subtropical Estuary. Ph.D. Thesis, Florida Institute of Technology, Melbourne, FL, USA, 2016. [Google Scholar]
- Trebitz, A.S.; West, C.W.; Hoffman, J.C.; Kelly, J.R.; Peterson, G.S.; Grigorovich, I.A. Status of non-indigenous benthic invertebrates in the Duluth–Superior Harbor and the role of sampling methods in their detection. J. Great Lakes Res. 2010, 36, 747–756. [Google Scholar] [CrossRef]
- Frazao, A.A. Bioassessment of Streams within the Clay-Plains Region of Southwestern Ontario: Optimizing Sampling and Laboratory Assessment Methods. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2019. [Google Scholar]
- Marinelli, R.L.; Williams, T.J. Evidence for density-dependent effects of infauna on sediment biogeochemistry and benthic-pelagic coupling in nearshore systems. Estuar. Coast. Shelf Sci. 2003, 57, 179–192. [Google Scholar] [CrossRef]
- Gergs, R.; Grey, J.; Rothhaupt, K.O. Temporal variation in zebra mussel (Dreissena polymorpha) density structure the benthic food web and community composition on hard substrates in Lake Constance, Germany. Biol. Invasions 2011, 13, 2727–2738. [Google Scholar] [CrossRef]
- Rumohr, H.; Karakassis, I.; Jensen, J.N. Estimating species richness, abundance and diversity with 70 macrobenthic replicates in the Western Baltic Sea. Mar. Ecol. Prog. Ser. 2001, 214, 103–110. [Google Scholar] [CrossRef]
- Ellingsen, K.E. Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Mar. Ecol. Prog. Ser. 2002, 232, 15–27. [Google Scholar] [CrossRef]
- Escaravage, V.; Herman, P.M.J.; Merckx, B.; Wlodarska-Kowalczuk, M.; Amouroux, J.M.; Degraer, S.; Grémare, A.; Heip, C.H.; Hummel, H.; Karakassis, I.; et al. Distribution patterns of macrofaunal species diversity in subtidal soft sediments: Biodiversity–productivity relationships from the MacroBen database. Mar. Ecol. Prog. Ser. 2009, 382, 253–264. [Google Scholar] [CrossRef]
- Kundu, S.; Mondal, N.; Lyla, P.S.; Ajmal Khan, S. Biodiversity and seasonal variation of macro-benthic infaunal community in the inshore waters of Parangipettai Coast. Environ. Monit. Assess. 2010, 163, 67–79. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; The University of Texas: Austin, TX, USA; Hemphill, TX, USA, 1974. [Google Scholar]
- Dean, W.E., Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Milliman, J.D. Organic matter content in US Atlantic continental slope sediments: Decoupling the grain-size factor. Deep Sea Res. Part II Top. Stud. Oceanogr. 1994, 41, 797–808. [Google Scholar] [CrossRef]
- Hedges, J.I.; Keil, R.G. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 1995, 49, 81–115. [Google Scholar] [CrossRef]
- Wang, F.; Chapman, P.M. Biological implications of sulfide in sediment—A review focusing on sediment toxicity. Environ. Toxicol. Chem. 1999, 18, 2526–2532. [Google Scholar] [CrossRef]
- Mermillod-Blondin, F.; Rosenberg, R.; François-Carcaillet, F.; Norling, K.; Mauclaire, L. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat. Microb. Ecol. 2004, 36, 271–284. [Google Scholar] [CrossRef]
- Giblin, A.E.; Hopkinson, C.S.; Tucker, J. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries 1997, 20, 346–364. [Google Scholar] [CrossRef]
- Aller, R.C. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation. Chem. Geol. 1994, 114, 331–345. [Google Scholar] [CrossRef]
- Gray, J.S. Effects of pollutants on marine ecosystems. Neth. J. Sea Res. 1982, 16, 424–443. [Google Scholar] [CrossRef]
- Pearson, T.H.; Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 1978, 16, 229–311. [Google Scholar]
- Kodama, K.; Lee, J.H.; Oyama, M.; Shiraishi, H.; Horiguchi, T. Disturbance of benthic macrofauna in relation to hypoxia and organic enrichment in a eutrophic coastal bay. Mar. Environ. Res. 2012, 76, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Hyland, J.; Balthis, L.; Karakassis, I.; Magni, P.; Petrov, A.; Shine, J.; Warwick, R. Organic carbon content of sediments as an indicator of stress in the marine benthos. Mar. Ecol. Prog. Ser. 2005, 295, 91–103. [Google Scholar] [CrossRef]
- Magni, P.; Tagliapietra, D.; Lardicci, C.; Balthis, L.; Castelli, A.; Como, S.; Pessa, G. Animal-sediment relationships: Evaluating the ‘Pearson– Rosenberg paradigm in Mediterranean coastal lagoons. Mar. Pollut. Bull. 2009, 58, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Puente, A.; Diaz, R.J. Response of benthos to ocean outfall discharges: Does a general pattern exist? Mar. Pollut. Bull. 2015, 101, 174–181. [Google Scholar] [CrossRef]
- Gray, J.S.; Wu, R.S.S.; Or, Y.Y. Effects of hypoxia and organic enrichment of the coastal marine environment. Mar. Ecol. Prog. Ser. 2002, 238, 249–279. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 1995, 33, 245–303. [Google Scholar]
- Viaroli, P.; Bartoli, M.; Giordani, G.; Naldi, M.; Orfanidis, S.; Zaldivar, J.M. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: A brief overview. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18 (Suppl. S1), S105–S117. [Google Scholar] [CrossRef]
- Glassom, D. Predation/Disturbance Effects of Greater Flamingos (Phoenicopterus ruber) on the Benthic Communities of Two Southern African Lagoons. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 1992. [Google Scholar]
- Thistle, D. Natural physical disturbances and communities of marine soft bottoms. Mar. Ecol. Prog. Ser. 1981, 6, 223–228. [Google Scholar] [CrossRef]
- Virnstein, R.W. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 1977, 58, 1199–1217. [Google Scholar] [CrossRef]
- Virnstein, R.W. Predator caging experiments in soft sediments: Caution advised. In Estuarine Interactions; Elsevier: Amsterdam, The Netherlands, 1978; pp. 261–273. [Google Scholar]
- Quammen, M.L. Predation by shorebirds, fish, and crabs on invertebrates in intertidal mudflats: An experimental test. Ecology 1984, 65, 529–537. [Google Scholar] [CrossRef]
- Peterson, C.H. Predation, competitive exclusion, and diversity in the soft sediment benthic communities of estuaries and lagoons. In Ecological Processes in Coastal and Marine Systems; Springer: Boston, MA, USA, 1979; pp. 233–264. [Google Scholar]
- Probert, P.K. Disturbance, sediment stability, and trophic structure of soft-bottom communities. J. Mar. Res. 1984, 42, 893–921. [Google Scholar] [CrossRef]
- Chardy, P.; Clavier, J. Biomass and trophic structure of the macrobenthos in the south west lagoon of New Caledonia. Mar. Biol. 1988, 99, 195–202. [Google Scholar] [CrossRef]
- Woodin, S.A. Shallow water benthic ecology: A North American perspective of sedimentary habitats. Aust. J. Ecol. 1999, 24, 291–301. [Google Scholar] [CrossRef]
- Pelletiera, M.C.; Goldb, A.J.; Heltshec, J.F.; Buffumd, H.W. A method to identify estuarine macroinvertebrate pollution indicator species in the Virginian Biogeographic Province. Ecol. Indic. 2010, 10, 1037–1048. [Google Scholar] [CrossRef]
- Engle, V.D.; Summers, J.K.; Gaston, G.R. A benthic index of environmental condition of Gulf of Mexico estuaries. Estuaries 1994, 17, 372–384. [Google Scholar] [CrossRef]
- Dauvin, J.C. Paradox of estuarine quality: Benthic indicators and indices, consensus or debate for the future. Mar. Pollut. Bull. 2007, 55, 271–281. [Google Scholar] [CrossRef]
- Bridges, T.S.; Gustavson, K.E.; Schroeder, P.; Ells, S.J.; Hayes, D.; Nadeau, S.C.; Palermo, M.R.; Patmont, C. Dredging processes and remedy effectiveness: Relationship to the 4 Rs of environmental dredging. Integr. Environ. Assess. Manag. 2010, 6, 619–630. [Google Scholar] [CrossRef]
- Borjaa, A.; Dauerb, D.; Dıazc, R.; Llansód, R.J.; Muxikaa, I.; Rodrıgueza, J.G.; Schaffnerc, L. Assessing estuarine benthic quality conditions in Chesapeake Bay: A comparison of three indices. Ecol. Indic. 2008, 8, 395–403. [Google Scholar] [CrossRef]
- Bridges, T.S.; Ells, S.J.; Hayes, D.F.; Mount, D.; Nadeau, S.C.; Palermo, M.R.; Patmont, C.R.; Schroeder, P.R. The Four R’s of Environmental Dredging: Resuspension, Release, Residual and Risk. 2008. Available online: https://www.frtr.gov/matrix-2019/documents/Environmental-Dredging/2008-The-Four-Rs-of-Environmental-Dredging.pdf (accessed on 30 July 2021).
- Palermo, M.R.; Schroeder, P.R.; Estes, T.J.; Francingues, N.R. Technical Guidelines for Environmental Dredging of Contaminated Sediments; (No. ERDC/EL TR-08-29); Cold Regions Research and Engineering Laboratory (US): Hanover, NH, USA, 2008. [Google Scholar]
- Patmont, C.; LaRosa, P.; Narayanan, R.; Forrest, C. Environmental dredging residual generation and management. Integr. Environ. Assess. Manag. 2018, 14, 335–343. [Google Scholar] [CrossRef] [PubMed]
Bivalves | Pre-EDC | Post-EDC | Pre-EDT | Post-EDT | Pre-EDCS | Post-EDCS | Pre-EDTS | Post-EDTS |
---|---|---|---|---|---|---|---|---|
Amygdalum papyrium | W | Sp F W | Su F W | F | ||||
Angulus versicolor | Su | F | F | |||||
Anomalocardia cuneimeris | F | W | Sp Su | Su F W | ||||
Cyrtopleura costata | Su F W | |||||||
Melongena Corona | F | |||||||
Mercenaria mercenaria | F | Sp | F | |||||
Mulinia lateralis | Sp Su F W | Sp F W | Sp Su F W | Sp F W | Sp Su F W | Sp F W | Sp Su F W | Sp Su F W |
Parastarte triquetra | Sp Su F | Sp Su F | Sp Su F W | Sp Su F W | Sp Su F | Sp Su F W | Sp Su F W | |
Periglypta listeri | F | F | Su F | |||||
Gastropods | ||||||||
Acteocina atrata | F | Sp W | Sum F W | F | ||||
Acteocina canaliculata | Sp Su F W | Sp F W | Sp Su W | Sp F W | Sp Su F W | Sp Su F | Sp Su F W | Sp Su F W |
Astyris lunata | Su F W | Su F W | F | Sp Su F W | Sp W | Sp Su F W | Sp F W | |
Crepidula atrasolea | F | |||||||
Eulithidium pterocladicum | Su F | F | ||||||
Haminoea succinea | Sp W | Sp Su | F W | Su F W | ||||
Haminoea elegans | Su | Sp | Su F | Sp F W | F | |||
Japonactaeon punctostriatus | Sp | F | F W | Sp Su F | Su F | Sp Su F W | Su F | |
Limpet B | Su F | |||||||
Nassarius vibex | Su F W | Su F W | Su F W | Sp Su F W | Sp Su F W | Sp F W | Sp Su F W | Sp Su F W |
Odostomia laevigata | Sp | F | Sp Su | Sp | Su F W | Su F W | ||
Prunum apicinum | Sp | Sp W | Su | F W | ||||
Epitonium angulatum | W | |||||||
Snail R | Su F W | Su F | Su | |||||
Turbonilla sp. | Su | F | Sp Su F W | Su F |
EDT | BP Index | SD | SE | Dominant Species |
---|---|---|---|---|
Spring-2017 | 0.34 | 0.43 | 0.12 | Parastarte triquetra |
Summer-2017 | 0.33 | 0.43 | 0.14 | Parastarte triquetra |
Fall-2017 | 0.37 | 0.38 | 0.11 | Parastarte triquetra |
Winter-2017 | 0.36 | 0.48 | 0.14 | Nassarius vibex |
Spring-2018 | 0.25 | 0.45 | 0.13 | Mulinia lateralis |
Summer-2018 | 0.00 | 0.00 | 0.00 | None |
Fall-2018 | 0.00 | 0.00 | 0.00 | None |
Winter-2018 | 0.00 | 0.00 | 0.00 | None |
Spring-2019 | 0.11 | 0.30 | 0.09 | Mulinia lateralis |
Summer-2019 | 0.08 | 0.29 | 0.08 | Nassarius vibex |
Fall-2019 | 0.62 | 0.36 | 0.10 | Japonactaeon punctostriatus |
Winter-2019 | 0.53 | 0.44 | 0.13 | Parastarte triquetra |
Spring-2020 | 0.00 | 0.00 | 0.00 | None |
Summer-2020 | 0.33 | 0.50 | 0.17 | Parastarte triquetra |
Fall-2020 | 0.22 | 0.36 | 0.12 | Japonactaeon punctostriatus |
Winter-2020 | 0.37 | 0.45 | 0.15 | Acteocina canaliculata |
EDTS | ||||
Spring-2017 | 0.59 | 0.39 | 0.13 | Mulinia lateralis |
Summer-2017 | 0.26 | 0.28 | 0.09 | Haminoea succinea |
Fall-2017 | 0.71 | 0.37 | 0.12 | Mulinia lateralis |
Winter-2017 | 0.34 | 0.30 | 0.10 | Mulinia lateralis |
Spring-2018 | 0.55 | 0.15 | 0.05 | Mulinia lateralis |
Summer-2018 | 0.00 | 0.00 | 0.00 | None |
Fall-2018 | 0.74 | 0.35 | 0.12 | Parastarte triquetra |
Winter-2018 | 0.73 | 0.42 | 0.14 | Parastarte triquetra |
Spring-2019 | 0.95 | 0.05 | 0.02 | Parastarte triquetra |
Summer-2019 | 0.53 | 0.15 | 0.05 | Parastarte triquetra |
Fall-2019 | 0.53 | 0.16 | 0.05 | Parastarte triquetra |
Winter-2019 | 0.81 | 0.14 | 0.05 | Parastarte triquetra |
Spring-2020 | 0.00 | 0.00 | 0.00 | None |
Summer-2020 | 0.84 | 0.32 | 0.11 | Parastarte triquetra |
Fall-2020 | 0.86 | 0.10 | 0.03 | Parastarte triquetra |
Winter-2020 | 0.50 | 0.26 | 0.09 | Parastarte triquetra |
EDC | ||||
Spring-2017 | 0.00 | 0.00 | 0.00 | None |
Summer-2017 | 0.39 | 0.49 | 0.16 | Nassarius vibex |
Fall-2017 | 0.45 | 0.27 | 0.09 | Mulinia lateralis |
Winter-2017 | 0.52 | 0.50 | 0.17 | Acteocina canaliculata |
Spring-2018 | 0.55 | 0.52 | 0.17 | Mulinia lateralis |
Summer-2018 | 0.33 | 0.50 | 0.17 | Mulinia lateralis |
Fall-2018 | 0.33 | 0.50 | 0.17 | Mulinia lateralis |
Winter-2018 | 0.29 | 0.45 | 0.15 | Mulinia lateralis |
Spring-2019 | 0.56 | 0.53 | 0.18 | Mulinia lateralis |
Summer-2019 | 0.30 | 0.45 | 0.15 | Mulinia lateralis |
Fall-2019 | 0.00 | 0.00 | 0.00 | None |
Winter-2019 | 0.78 | 0.44 | 0.15 | Mulinia lateralis |
Spring-2020 | 0.00 | 0.00 | 0.00 | None |
Summer-2020 | 0.65 | 0.49 | 0.16 | Parastarte triquetra |
Fall-2020 | 0.56 | 0.53 | 0.18 | Parastarte triquetra |
Winter-2020 | 0.59 | 0.46 | 0.15 | Mulinia lateralis |
EDCS | ||||
Spring-2017 | 0.00 | 0.00 | 0.00 | None |
Summer-2017 | 0.55 | 0.20 | 0.06 | Parastarte triquetra |
Fall-2017 | 0.46 | 0.43 | 0.13 | Mulinia lateralis |
Winter-2017 | 0.54 | 0.32 | 0.09 | Mulinia lateralis |
Spring-2018 | 0.48 | 0.35 | 0.10 | Acteocina canaliculata |
Summer-2018 | 0.59 | 0.31 | 0.09 | Mulinia lateralis |
Fall-2018 | 0.59 | 0.29 | 0.08 | Mulinia lateralis |
Winter-2018 | 0.81 | 0.19 | 0.06 | Parastarte triquetra |
Spring-2019 | 0.71 | 0.29 | 0.08 | Parastarte triquetra |
Summer-2019 | 0.00 | 0.00 | 0.00 | None |
Fall-2019 | 0.00 | 0.00 | 0.00 | None |
Winter-2019 | 0.70 | 0.27 | 0.08 | Parastarte triquetra |
Spring-2020 | 0.00 | 0.00 | 0.00 | None |
Summer-2020 | 1.00 | 0.00 | 0.00 | Parastarte triquetra |
Fall-2020 | 0.94 | 0.01 | 0.00 | Parastarte triquetra |
Winter-2020 | 0.64 | 0.14 | 0.05 | Parastarte triquetra |
Gastropods | Spring | Summer | Fall | Winter | Overall |
---|---|---|---|---|---|
Acteocina atrata | X | X | |||
Acteocina canaliculata | X | ||||
Astyris lunata | |||||
Caecum pulchellum | |||||
Crepidula atrasolea | X | ||||
Eulithidium pterocladicum | X | ||||
Haminoea succinea | X | X | |||
Haminoea elegans | X | ||||
Japonactaeon punctostriatus | X | X | |||
Limpet B | |||||
Phrontis vibex | X | ||||
Odostomia laevigata | |||||
Prunum apicinum | X | ||||
Epitonium angulatum | |||||
Snail R | X | X | X | ||
Turbonilla sp. | X | X | |||
Bivalves | |||||
Amygdalum papyrium | |||||
Ameritella versicolor | X | ||||
Anomalocardia cuneimeris | X | X | X | ||
Cyrtopleura costata | |||||
Melongena corona | X | ||||
Mercenaria mercenaria | X | ||||
Mulinia lateralis | X | ||||
Parastarte triquetra | X | X | |||
Periglypta listeri | X | X | |||
Overall | |||||
Overall Biodiversity | X | X | X | X | X |
Overall Species Richness | X | X | X | X | X |
Overall Abundance | X | X | X | ||
Gastropod Biodiversity | X | X | X | X | X |
Gastropod Species Richness | X | X | X | X | X |
Gastropod Abundance | X | X | X | X | |
Bivalve Biodiversity | X | ||||
Bivalve Species Richness | X | X | X | X | X |
Bivalve Abundance | X | X | X |
Seasons | Treatment | Year | Sediment Organic Content | Silt Clay Content | Water Content | Percent Dissolved Oxygen | Water Temperature | Salinity | Seagrass Percent Cover | |
---|---|---|---|---|---|---|---|---|---|---|
Overall Biodiversity: Treatment | X | |||||||||
Overall Species Richness: Treatment | X | X | ||||||||
Overall Abundance: Treatment | X | |||||||||
Overall Biodiversity: Seagrass | X | X | ||||||||
Overall Species Richness: Seagrass | X | X | ||||||||
Overall Abundance: Seagrass | X | X | X | |||||||
Gastropod Biodiversity: Treatment | ||||||||||
Gastropod Species Richness: Treatment | ||||||||||
Gastropod Abundance: Treatment | ||||||||||
Gastropod Biodiversity: Seagrass | X | |||||||||
Gastropod Species Richness: Seagrass | X | X | ||||||||
Gastropod Abundance: Seagrass | X | |||||||||
Bivalve Biodiversity: Treatment | ||||||||||
Bivalve Species Richness: Treatment | ||||||||||
Bivalve Abundance: Treatment | X | |||||||||
Bivalve Biodiversity: Seagrass | ||||||||||
Bivalve Species Richness: Seagrass | X | X | ||||||||
Bivalve Abundance: Seagrass | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stark, R.H.; Johnson, K.B. Benthic Mollusk Biodiversity Correlates with Polluted Sediment Conditions in a Shallow Subtropical Estuary. J. Mar. Sci. Eng. 2025, 13, 13. https://doi.org/10.3390/jmse13010013
Stark RH, Johnson KB. Benthic Mollusk Biodiversity Correlates with Polluted Sediment Conditions in a Shallow Subtropical Estuary. Journal of Marine Science and Engineering. 2025; 13(1):13. https://doi.org/10.3390/jmse13010013
Chicago/Turabian StyleStark, Rachael H., and Kevin B. Johnson. 2025. "Benthic Mollusk Biodiversity Correlates with Polluted Sediment Conditions in a Shallow Subtropical Estuary" Journal of Marine Science and Engineering 13, no. 1: 13. https://doi.org/10.3390/jmse13010013
APA StyleStark, R. H., & Johnson, K. B. (2025). Benthic Mollusk Biodiversity Correlates with Polluted Sediment Conditions in a Shallow Subtropical Estuary. Journal of Marine Science and Engineering, 13(1), 13. https://doi.org/10.3390/jmse13010013