Antioxidant Systems in Extremophile Marine Fish Species
Abstract
:1. Introduction
2. Oxidative Stress and Antioxidant Defence
3. Antioxidants in Extreme Marine Environments
3.1. Antarctic Fish
3.1.1. Enzymatic Antioxidant Systems
3.1.2. Non-Enzymatic Antioxidant Systems
3.1.3. Environmental Stressors
Thermal Stress
Persistent Organic Pollutants (POPs)
3.2. Deep-Sea Fish
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Taenzer, L.; Wankel, S.D.; Kapit, J.; Pardis, W.A.; Herrera, S.; Auscavitch, S.; Grabb, K.C.; Cordes, E.; Hansel, C.M. Corals and Sponges Are Hotspots of Reactive Oxygen Species in the Deep Sea. PNAS Nexus 2023, 2, pgad398. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D. Bioactive Molecules from Extreme Environments. Mar. Drugs 2020, 18, 640. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D. Free Radical-scavenging Activity of Marine Proteins and Peptides. In Marine Proteins and Peptides; Wiley: New York, NY, USA, 2013; pp. 487–497. [Google Scholar]
- Campanyà-Llovet, N.; Snelgrove, P.V.R.; Parrish, C.C. Rethinking the Importance of Food Quality in Marine Benthic Food Webs. Prog. Oceanogr. 2017, 156, 240–251. [Google Scholar] [CrossRef]
- Slade, D.; Radman, M. Oxidative Stress Resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 2011, 75, 133–191. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.M.; Hofmann, G.E. Expression of 70 kDa Heat Shock Proteins in Antarctic and New Zealand Notothenioid Fish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2000, 125, 229–238. [Google Scholar] [CrossRef]
- Bakiu, R.; Pacchini, S.; Piva, E.; Schumann, S.; Tolomeo, A.M.; Ferro, D.; Irato, P.; Santovito, G. Metallothionein Expression as a Physiological Response against Metal Toxicity in the Striped Rockcod Trematomus Hansoni. Int. J. Mol. Sci. 2022, 23, 12799. [Google Scholar] [CrossRef] [PubMed]
- Kancheva, V.D.; Dettori, M.A.; Fabbri, D.; Alov, P.; Angelova, S.E.; Slavova-Kazakova, A.K.; Carta, P.; Menshov, V.A.; Yablonskaya, O.I.; Trofimov, A.V.; et al. Natural Chain-Breaking Antioxidants and Their Synthetic Analogs as Modulators of Oxidative Stress. Antioxidants 2021, 10, 624. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S. Reactive Oxygen Species and Cellular Defense System. In Free Radicals in Human Health and Disease; Springer: New Delhi, India, 2015; pp. 17–29. [Google Scholar]
- Acworth, I.N.; McCabe, D.R.; Maher, T.J. The Analysis of Free Radicals, Their Reaction Products, and Antioxidants. In Oxidants, Antioxidants, and Free Radicals; Baskin, S.I., Salem, H., Eds.; Taylor and Francis: Washington, DC, USA, 1977; pp. 23–77. ISBN 978-0-203-74467-3. [Google Scholar]
- Franchi, N.; Ferro, D.; Ballarin, L.; Santovito, G. Transcription of Genes Involved in Glutathione Biosynthesis in the Solitary Tunicate Ciona Intestinalis Exposed to Metals. Aquat. Toxicol. 2012, 114–115, 14–22. [Google Scholar] [CrossRef]
- Tavassolifar, M.J.; Vodjgani, M.; Salehi, Z.; Izad, M. The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Lesmana, R.; Parameswari, C.; Mandagi, G.F.; Wahyudi, J.F.; Permana, N.J.; Radhiyanti, P.T.; Gunadi, J.W. The Role of Exercise-Induced Reactive Oxygen Species (ROS) Hormesis in Aging: Friend or Foe. Cell. Physiol. Biochem. 2022, 56, 692–706. [Google Scholar] [CrossRef]
- Shields, H.J.; Traa, A.; Van Raamsdonk, J.M. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front. Cell Dev. Biol. 2021, 9, 628157. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Irato, P.; Santovito, G. Enzymatic and Non-Enzymatic Molecules with Antioxidant Function. Antioxidants 2021, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Fridovich, I. Superoxide Anion Radical (O·2), Superoxide Dismutases, and Related Matters. J. Biol. Chem. 1997, 272, 18515–18517. [Google Scholar] [CrossRef] [PubMed]
- Piva, E.; Schumann, S.; Dotteschini, S.; Brocca, G.; Radaelli, G.; Marion, A.; Irato, P.; Bertotto, D.; Santovito, G. Antioxidant Responses Induced by PFAS Exposure in Freshwater Fish in the Veneto Region. Antioxidants 2022, 11, 1115. [Google Scholar] [CrossRef] [PubMed]
- Chatzidimitriou, E.; Bisaccia, P.; Corrà, F.; Bonato, M.; Irato, P.; Manuto, L.; Toppo, S.; Bakiu, R.; Santovito, G. Copper/Zinc Superoxide Dismutase from the Crocodile Icefish Chionodraco Hamatus: Antioxidant Defense at Constant Sub-Zero Temperature. Antioxidants 2020, 9, 325. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, E. Basic Mechanisms of Antioxidant Activity. BioFactors 1997, 6, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R. Tissue-Specific Functions of Individual Glutathione Peroxidases. Free Radic. Biol. Med. 1999, 27, 951–965. [Google Scholar] [CrossRef] [PubMed]
- Ferro, D.; Bakiu, R.; Pucciarelli, S.; Miceli, C.; Vallesi, A.; Irato, P.; Santovito, G. Molecular Characterization, Protein-Protein Interaction Network, and Evolution of Four Glutathione Peroxidases from Tetrahymena Thermophila. Antioxidants 2020, 9, 949. [Google Scholar] [CrossRef]
- Toppo, S.; Vanin, S.; Bosello, V.; Tosatto, S.C.E. Evolutionary and Structural Insights Into the Multifaceted Glutathione Peroxidase (Gpx) Superfamily. Antioxid. Redox Signal. 2008, 10, 1501–1514. [Google Scholar] [CrossRef]
- Sattin, G.; Bakiu, R.; Tolomeo, A.M.; Carraro, A.; Coppola, D.; Ferro, D.; Patarnello, T.; Santovito, G. Characterization and Expression of a New Cytoplasmic Glutathione Peroxidase 1 Gene in the Antarctic Fish Trematomus Bernacchii. Hydrobiologia 2015, 761, 363–372. [Google Scholar] [CrossRef]
- Wood, Z.A.; Schröder, E.; Robin Harris, J.; Poole, L.B. Structure, Mechanism and Regulation of Peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Knoops, B.; Loumaye, E.; Van Der Eecken, V. Evolution of the Peroxiredoxins. In Peroxiredoxin Systems. Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2007; pp. 27–40. [Google Scholar]
- Al-Asadi, S.; Malik, A.; Bakiu, R.; Santovito, G.; Menz, I.; Schuller, K. Characterization of the Peroxiredoxin 1 Subfamily from Tetrahymena Thermophila. Cell. Mol. Life Sci. 2019, 76, 4745–4768. [Google Scholar] [CrossRef] [PubMed]
- Formigari, A.; Boldrin, F.; Santovito, G.; Cassidy-Hanley, D.; Clark, T.G.; Piccinni, E. Functional Characterization of the 5′-Upstream Region of MTT5 Metallothionein Gene from Tetrahymena Thermophila. Protist 2010, 161, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Santovito, G.; Trentin, E.; Gobbi, I.; Bisaccia, P.; Tallandini, L.; Irato, P. Non-Enzymatic Antioxidant Responses of Mytilus Galloprovincialis: Insights into the Physiological Role against Metal-Induced Oxidative Stress. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2021, 240, 108909. [Google Scholar] [CrossRef] [PubMed]
- Ingold, K.U.; Webb, A.C.; Witter, D.; Burton, G.W.; Metcalfe, T.A.; Muller, D.P.R. Vitamin E Remains the Major Lipid-Soluble, Chain-Breaking Antioxidant in Human Plasma Even in Individuals Suffering Severe Vitamin E Deficiency. Arch. Biochem. Biophys. 1987, 259, 224–225. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int. J. Mol. Sci. 2024, 25, 2600. [Google Scholar] [CrossRef] [PubMed]
- Sattin, G.; Santovito, G.; Cassini, A. Physiological Antioxidant Responses against High Environmental Oxygen Concentration: Glutathione Peroxidase from the Antarctic Teleost Trematomus Eulepidotus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 151, S27. [Google Scholar] [CrossRef]
- O’Quin, K.E.; Yoshizawa, M.; Doshi, P.; Jeffery, W.R. Quantitative Genetic Analysis of Retinal Degeneration in the Blind Cavefish Astyanax Mexicanus. PLoS ONE 2013, 8, e57281. [Google Scholar] [CrossRef]
- Terzibasi, E.; Valenzano, D.R.; Cellerino, A. The Short-Lived Fish Nothobranchius Furzeri as a New Model System for Aging Studies. Exp. Gerontol. 2007, 42, 81–89. [Google Scholar] [CrossRef]
- Li, L.; Rose, P.; Moore, P.K. Hydrogen Sulfide and Cell Signaling. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 169–187. [Google Scholar] [CrossRef]
- Ferreira, M.; Costa, J.; Reis-Henriques, M.A. ABC Transporters in Fish Species: A Review. Front. Physiol. 2014, 5, 266. [Google Scholar] [CrossRef]
- Andrade, D.C.; Gómez-Silva, B.; Batista-García, R.A.; Millet, G.P. Editorial: Adaptive Response of Living Beings to Extreme Environments: Integrative Approaches from Cellular and Molecular Biology, Biotechnology, Microbiology to Physiology. Front. Physiol. 2022, 13, 1068287. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.C.; Martinez, C.M.; Friedman, S.T.; Wainwright, P.C.; Price, S.A.; Tornabene, L. Alternating Regimes of Shallow and Deep-Sea Diversification Explain a Species-Richness Paradox in Marine Fishes. Proc. Natl. Acad. Sci. USA 2022, 119, e2123544119. [Google Scholar] [CrossRef]
- Wainwright, P.C.; Longo, S.J. Functional Innovations and the Conquest of the Oceans by Acanthomorph Fishes. Curr. Biol. 2017, 27, R550–R557. [Google Scholar] [CrossRef] [PubMed]
- Hala, E.; Bakiu, R. Adriatic Sea Fishery Product Safety and Prospectives in Relation to Climate Change. Fishes 2024, 9, 160. [Google Scholar] [CrossRef]
- Daane, J.M.; Detrich, H.W. Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective. Annu. Rev. Anim. Biosci. 2022, 10, 39–62. [Google Scholar] [CrossRef]
- Ruud, J.T. Vertebrates without Erythrocytes and Blood Pigment. Nature 1954, 173, 848–850. [Google Scholar] [CrossRef]
- Moylan, T.J.; Sidell, B.D. Concentrations of Myoglobin and Myoglobin mRNA in Heart Ventricles From Antarctic Fishes. J. Exp. Biol. 2000, 203, 1277–1286. [Google Scholar] [CrossRef]
- Klein, R.D.; Borges, V.D.; Rosa, C.E.; Colares, E.P.; Robaldo, R.B.; Martinez, P.E.; Bianchini, A. Effects of Increasing Temperature on Antioxidant Defense System and Oxidative Stress Parameters in the Antarctic Fish Notothenia Coriiceps and Notothenia Rossii. J. Therm. Biol. 2017, 68, 110–118. [Google Scholar] [CrossRef]
- Guillen, A.C.; Borges, M.E.; Herrerias, T.; Kandalski, P.K.; de Souza, M.R.D.P.; Donatti, L. Gradual Increase of Temperature Trigger Metabolic and Oxidative Responses in Plasma and Body Tissues in the Antarctic Fish Notothenia Rossii. Fish Physiol. Biochem. 2022, 48, 337–354. [Google Scholar] [CrossRef]
- Abele, D.; Puntarulo, S. Formation of Reactive Species and Induction of Antioxidant Defence Systems in Polar and Temperate Marine Invertebrates and Fish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2004, 138, 405–415. [Google Scholar] [CrossRef]
- Welker, A.F.; Moreira, D.C.; Campos, É.G.; Hermes-Lima, M. Role of Redox Metabolism for Adaptation of Aquatic Animals to Drastic Changes in Oxygen Availability. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 165, 384–404. [Google Scholar] [CrossRef]
- Tolomeo, A.M.; Carraro, A.; Bakiu, R.; Toppo, S.; Place, S.P.; Ferro, D.; Santovito, G. Peroxiredoxin 6 from the Antarctic Emerald Rockcod: Molecular Characterization of Its Response to Warming. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2016, 186, 59–71. [Google Scholar] [CrossRef]
- Santovito, G.; Piccinni, E.; Boldrin, F.; Irato, P. Comparative Study on Metal Homeostasis and Detoxification in Two Antarctic Teleosts. Comp. Biochem. Physiol.-C Toxicol. Pharmacol. 2012, 155, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Colella, A.; Patamia, M.; Galtieri, A.; Giardina, B. Cold Adaptation and Oxidative Metabolism of Antarctic Fish. Ital. J. Zool. 2000, 67, 33–36. [Google Scholar] [CrossRef]
- Regoli, F.; Giuliani, M.E. Oxidative Pathways of Chemical Toxicity and Oxidative Stress Biomarkers in Marine Organisms. Mar. Environ. Res. 2014, 93, 106–117. [Google Scholar] [CrossRef]
- Cassini, A.; Favero, M.; Albergoni, V. Comparative Studies of Antioxidant Enzymes in Red-Blooded and White-Blooded Antarctic Teleost Fish. Pagothenia Bernacchii and Chionodraco Hamatus. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1993, 106, 333–336. [Google Scholar] [CrossRef]
- Witas, H.; Gabryelak, T.; Matkovics, B. Comparative Studies on Superoxide Dismutase and Catalase Activities in Livers of Fish and Other Antarctic Vertebrates. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1984, 77, 409–411. [Google Scholar] [CrossRef]
- Benedetti, M.; Nigro, M.; Regoli, F. Characterisation of Antioxidant Defences in Three Antarctic Notothenioid Species from Terra Nova Bay (Ross Sea). Chem. Ecol. 2010, 26, 305–314. [Google Scholar] [CrossRef]
- Enzor, L.A.; Place, S.P. Is Warmer Better? Decreased Oxidative Damage in Notothenioid Fish after Long-Term Acclimation to Multiple Stressors. J. Exp. Biol. 2014, 217, 3301–3310. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, M.; Luquet, C.M.; Evelson, P.A.; Polo, J.M.; Llesuy, S. Antioxidant Levels from Different Antarctic Fish Caught around South Georgia Island and Shag Rocks. Polar Biol. 2000, 23, 160–165. [Google Scholar] [CrossRef]
- Tolomeo, A.M.; Carraro, A.; Bakiu, R.; Toppo, S.; Garofalo, F.; Pellegrino, D.; Gerdol, M.; Ferro, D.; Place, S.P.; Santovito, G. Molecular Characterization of Novel Mitochondrial Peroxiredoxins from the Antarctic Emerald Rockcod and Their Gene Expression in Response to Environmental Warming. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2019, 225, 108580. [Google Scholar] [CrossRef] [PubMed]
- Römisch, K.; Matheson, T. Cell Biology in the Antarctic: Studying Life in the Freezer. Nat. Cell Biol. 2003, 5, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.S.; Cavicchioli, R. Cold-Adapted Enzymes. Annu. Rev. Biochem. 2006, 75, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Santovito, G.; Marino, S.M.; Sattin, G.; Cappellini, R.; Bubacco, L.; Beltramini, M. Cloning and Characterization of Cytoplasmic Carbonic Anhydrase from Gills of Four Antarctic Fish: Insights into the Evolution of Fish Carbonic Anhydrase and Cold Adaptation. Polar Biol. 2012, 35, 1587–1600. [Google Scholar] [CrossRef]
- Esterbauer, H.; Dieber-Rotheneder, M.; Striegl, G.; Waeg, G. Role of Vitamin E in Preventing the Oxidation of Low-Density Lipoprotein. Am. J. Clin. Nutr. 1991, 53, 314S–321S. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.B.; Buc Calderon, P. Free Radicals and Oxidation Phenomena in Biological Systems; M. Dekker: New York, NY, USA, 1995; ISBN 978-0-8247-9587-0. [Google Scholar]
- Kornbrust, D.J.; Mavis, R.D. Relative Susceptibility of Microsomes from Lung, Heart, Liver, Kidney, Brain and Testes to Lipid Peroxidation: Correlation with Vitamin E Content. Lipids 1980, 15, 315–322. [Google Scholar] [CrossRef]
- Gieseg, S.P.; Cuddihy, S.; Hill, J.V.; Davison, W. A Comparison of Plasma Vitamin C and E Levels in Two Antarctic and Two Temperate Water Fish Species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2000, 125, 371–378. [Google Scholar] [CrossRef]
- Johnston, I.A.; Calvo, J.; Guderley, H.; Fernandez, D.; Palmer, L. Latitudinal Variation in the Abundance and Oxidative Capacities of Muscle Mitochondria in Perciform Fishes. J. Exp. Biol. 1998, 201, 1–12. [Google Scholar] [CrossRef]
- Klein, R.D.; Rosa, C.E.; Colares, E.P.; Robaldo, R.B.; Martinez, P.E.; Bianchini, A. Antioxidant Defense System and Oxidative Status in Antarctic Fishes: The Sluggish Rockcod Notothenia Coriiceps versus the Active Marbled Notothen Notothenia Rossii. J. Therm. Biol. 2017, 68, 119–127. [Google Scholar] [CrossRef]
- Santovito, G.; Piccinni, E.; Irato, P. An Improved Method for Rapid Determination of the Reduced and Oxidized States of Metallothioneins in Biological Samples. In Environmental Research Summaries: Volume 2; Melekhin, D.S., Dolukhanov, M.F., Eds.; Nova Science Publisher Inc.: New York, NY, USA, 2012; pp. 287–288. [Google Scholar]
- Singhal, R.K.; Anderson, M.E.; Meister, A. Glutathione, a First Line of Defense against Cadmium Toxicity. FASEB J. 1987, 1, 220–223. [Google Scholar] [CrossRef]
- Freedman, J.H.; Ciriolo, M.R.; Peisach, J. The Role of Glutathione in Copper Metabolism and Toxicity. J. Biol. Chem. 1989, 264, 5598–5605. [Google Scholar] [CrossRef]
- Kägi, J.H.R. Overview of Metallothionein. Methods Enzymol. 1991, 205, 613–626. [Google Scholar] [CrossRef]
- Scudiero, R.; De Prisco, P.P.; Camardella, L.; D’Avino, R.; di Prisco, G.; Parisi, E. Apparent Deficiency of Metallothionein in the Liver of the Antarctic Icefish Chionodraco Hamatus. Identification and Isolation of a Zinc-Containing Protein Unlike Metallothionein. Comp. Biochem. Physiol. Part B Comp. Biochem. 1992, 103, 201–207. [Google Scholar] [CrossRef]
- Scudiero, R.; Carginale, V.; Riggio, M.; Capasso, C.; Capasso, A.; Kille, P.; di Prisco, G.; Parisi, E. Difference in Hepatic Metallothionein Content in Antarctic Red-Blooded and Haemoglobinless Fish: Undetectable Metallothionein Levels in Haemoglobinless Fish Is Accompanied by Accumulation of Untranslated Metallothionein mRNA. Biochem. J. 1997, 322, 207–211. [Google Scholar] [CrossRef]
- Bargelloni, L.; Scudiero, R.; Parisi, E.; Carginale, V.; Capasso, C.; Patarnello, T. Metallothioneins in Antarctic Fish: Evidence for Independent Duplication and Gene Conversion. Mol. Biol. Evol. 1999, 16, 885–897. [Google Scholar] [CrossRef]
- Bakiu, R.; Boldrin, F.; Pacchini, S.; Schumann, S.; Piva, E.; Tolomeo, A.M.; Ferro, D.; Grapputo, A.; Santovito, G.; Irato, P. Molecular Evolution of Metallothioneins of Antarctic Fish: A Physiological Adaptation to Peculiar Seawater Chemical Characteristics. J. Mar. Sci. Eng. 2022, 10, 1592. [Google Scholar] [CrossRef]
- Westerlund, S.; Öhman, P. Cadmium, Copper, Cobalt, Nickel, Lead, and Zinc in the Water Column of the Weddell Sea, Antarctica. Geochim. Cosmochim. Acta 1991, 55, 2127–2146. [Google Scholar] [CrossRef]
- King, C.K.; Dowse, M.C.; Simpson, S.L.; Jolley, D.F. An Assessment of Five Australian Polychaetes and Bivalves for Use in Whole-Sediment Toxicity Tests: Toxicity and Accumulation of Copper and Zinc from Water and Sediment. Arch. Environ. Contam. Toxicol. 2004, 47, 314–323. [Google Scholar] [CrossRef]
- Vacchi, M.; La Mesa, M. The Diet of the Antarctic Fish Trematomus Newnesi Boulenger, 1902 (Nototheniidae) from Terra Nova Bay, Ross Sea. Antacrt. Sci. 1995, 7, 37–38. [Google Scholar] [CrossRef]
- Cerro-Gálvez, E.; Roscales, J.L.; Jiménez, B.; Sala, M.M.; Dachs, J.; Vila-Costa, M. Microbial Responses to Perfluoroalkyl Substances and Perfluorooctanesulfonate (PFOS) Desulfurization in the Antarctic Marine Environment. Water Res. 2020, 171, 115434. [Google Scholar] [CrossRef]
- Marrone, A.; La Russa, D.; Brunelli, E.; Santovito, G.; La Russa, M.F.; Barca, D.; Pellegrino, D. Antarctic Fish as a Global Pollution Sensor: Metals Biomonitoring in a Twelve-Year Period. Front. Mol. Biosci. 2021, 8, 794946. [Google Scholar] [CrossRef]
- Chapman, P.M.; Riddle, M.J. Missing and Needed: Polar Marine Ecotoxicology. Mar. Pollut. Bull. 2003, 46, 927–928. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Mark, F.C.; Bock, C. Oxygen Limited Thermal Tolerance in Fish? Respir. Physiol. Neurobiol. 2004, 141, 243–260. [Google Scholar] [CrossRef]
- Pörtner, H.-O. Oxygen- and Capacity-Limitation of Thermal Tolerance: A Matrix for Integrating Climate-Related Stressor Effects in Marine Ecosystems. J. Exp. Biol. 2010, 213, 881–893. [Google Scholar] [CrossRef]
- Carney Almroth, B.; Asker, N.; Wassmur, B.; Rosengren, M.; Jutfelt, F.; Gräns, A.; Sundell, K.; Axelsson, M.; Sturve, J. Warmer Water Temperature Results in Oxidative Damage in an Antarctic Fish, the Bald Notothen. J. Exp. Mar. Biol. Ecol. 2015, 468, 130–137. [Google Scholar] [CrossRef]
- Roscales, J.L.; Vicente, A.; Ryan, P.G.; González-Solís, J.; Jiménez, B. Spatial and Interspecies Heterogeneity in Concentrations of Perfluoroalkyl Substances (PFASs) in Seabirds of the Southern Ocean. Environ. Sci. Technol. 2019, 53, 9855–9865. [Google Scholar] [CrossRef]
- Gao, K.; Miao, X.; Fu, J.; Chen, Y.; Li, H.; Pan, W.; Fu, J.; Zhang, Q.; Zhang, A.; Jiang, G. Occurrence and Trophic Transfer of Per- and Polyfluoroalkyl Substances in an Antarctic Ecosystem. Environ. Pollut. 2020, 257, 113383. [Google Scholar] [CrossRef]
- Bonato, M.; Corrà, F.; Bellio, M.; Guidolin, L.; Tallandini, L.; Irato, P.; Santovito, G. Pfas Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. Int. J. Environ. Res. Public Health 2020, 17, 8020. [Google Scholar] [CrossRef]
- Pacchini, S.; Piva, E.; Schumann, S.; Irato, P.; Pellegrino, D.; Santovito, G. An Experimental Study on Antioxidant Enzyme Gene Expression in Trematomus Newnesi (Boulenger, 1902) Experimentally Exposed to Perfluoro-Octanoic Acid. Antioxidants 2023, 12, 352. [Google Scholar] [CrossRef]
- Regoli, F.; Nigro, M.; Benedetti, M.; Gorbi, S.; Pretti, C.; Gervasi, P.G.; Fattorini, D. Interactions between Metabolism of Trace Metals and Xenobiotic Agonists of the Aryl Hydrocarbon Receptor in the Antarctic Fish Trematomus Bernacchii: Environmental Perspectives. Environ. Toxicol. Chem. 2005, 24, 1475–1482. [Google Scholar] [CrossRef]
- van Hurk, P.D.; Faisal, M.; Roberts, M.H., Jr. Interactive Effects of Cadmium and Benzo[a]Pyrene on Metallothionein Induction in Mummichog (Fundulus Heteroclitus). Mar. Environ. Res. 2000, 50, 83–87. [Google Scholar] [CrossRef]
- Stohs, S.; Bagchi, D. Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radic. Biol. Med. 1995, 18, 321–336. [Google Scholar] [CrossRef]
- Oliveira, M.; Santos, M.A.; Pacheco, M. Glutathione Protects Heavy Metal-Induced Inhibition of Hepatic Microsomal Ethoxyresorufin O-Deethylase Activity in Dicentrarchus labrax L. Ecotoxicol. Environ. Saf. 2004, 58, 379–385. [Google Scholar] [CrossRef]
- Sutton, T.T.; Milligan, R.J. Deep-Sea Ecology. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 35–45. [Google Scholar]
- de Busserolles, F.; Marshall, N.J. Seeing in the Deep-Sea: Visual Adaptations in Lanternfishes. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160070. [Google Scholar] [CrossRef]
- Horodysky, A.Z.; Brill, R.W.; Crawford, K.C.; Seagroves, E.S.; Johnson, A.K. Comparative Visual Ecophysiology of Mid-Atlantic Temperate Reef Fishes. Biol. Open 2013, 2, 1371–1381. [Google Scholar] [CrossRef]
- McClain, C.R.; Webb, T.J.; Nunnally, C.C.; Dixon, S.R.; Finnegan, S.; Nelson, J.A. Metabolic Niches and Biodiversity: A Test Case in the Deep Sea Benthos. Front. Mar. Sci. 2020, 7, 216. [Google Scholar] [CrossRef]
- Lazo, J.P.; Holt, J.G.; Arnold, C.R. Towards the Development of Suitable Microdiets for Substitution of Live Prey in the Rearing of Red Drum (Sciaenops ocellatus) Larvae: Applications of Studies on Digestive Physiology. Fish. Sci. 2002, 68, 888–891. [Google Scholar] [CrossRef]
- Maruska, K.P.; Gelsleichter, J. Hormones and Reproduction in Chondrichthyan Fishes. In Hormones and Reproduction of Vertebrates; Elsevier: Amsterdam, The Netherlands, 2011; pp. 209–237. [Google Scholar]
- Robison, B.H. Deep Pelagic Biology. J. Exp. Mar. Biol. Ecol. 2004, 300, 253–272. [Google Scholar] [CrossRef]
- Downie, A.T.; Lefevre, S.; Illing, B.; Harris, J.; Jarrold, M.D.; McCormick, M.I.; Nilsson, G.E.; Rummer, J.L. Rapid Physiological and Transcriptomic Changes Associated with Oxygen Delivery in Larval Anemonefish Suggest a Role in Adaptation to Life on Hypoxic Coral Reefs. PLoS Biol. 2023, 21, e3002102. [Google Scholar] [CrossRef]
- Pan, Y.K.; Ern, R.; Morrison, P.R.; Brauner, C.J.; Esbaugh, A.J. Acclimation to Prolonged Hypoxia Alters Hemoglobin Isoform Expression and Increases Hemoglobin Oxygen Affinity and Aerobic Performance in a Marine Fish. Sci. Rep. 2017, 7, 7834. [Google Scholar] [CrossRef]
- Lavado, R.; Garcia de la Parra, L.M.; Escartfn, E.; Porte, C. Antioxidant Defences in Coastal and Deep-Sea Fish: A Comparative Study. Rapp. Comm. Int. Méditerranée 2004, 37, 385. [Google Scholar]
- Canals, M.; Puig, P.; de Madron, X.D.; Heussner, S.; Palanques, A.; Fabres, J. Flushing Submarine Canyons. Nature 2006, 444, 354–357. [Google Scholar] [CrossRef]
- Rasmussen, R.S.; Morrissey, M.T. Marine Biotechnology for Production of Food Ingredients. Adv. Food Nutr. Res. 2007, 52, 237–292. [Google Scholar]
- Company, J.B.; Puig, P.; Sardà, F.; Palanques, A.; Latasa, M.; Scharek, R. Climate Influence on Deep Sea Populations. PLoS ONE 2008, 3, e1431. [Google Scholar] [CrossRef]
- Ramirez-Llodra, E.; Tyler, P.A.; Baker, M.C.; Bergstad, O.A.; Clark, M.R.; Escobar, E.; Levin, L.A.; Menot, L.; Rowden, A.A.; Smith, C.R.; et al. Man and the Last Great Wilderness: Human Impact on the Deep Sea. PLoS ONE 2011, 6, e22588. [Google Scholar] [CrossRef]
- Borghi, V.; Porte, C. Organotin Pollution in Deep-Sea Fish from the Northwestern Mediterranean. Environ. Sci. Technol. 2002, 36, 4224–4228. [Google Scholar] [CrossRef]
- Storelli, M.M.; Losada, S.; Marcotrigiano, G.O.; Roosens, L.; Barone, G.; Neels, H.; Covaci, A. Polychlorinated Biphenyl and Organochlorine Pesticide Contamination Signatures in Deep-Sea Fish from the Mediterranean Sea. Environ. Res. 2009, 109, 851–856. [Google Scholar] [CrossRef]
- Castro-Jiménez, J.; Rotllant, G.; Ábalos, M.; Parera, J.; Dachs, J.; Company, J.B.; Calafat, A.; Abad, E. Accumulation of Dioxins in Deep-Sea Crustaceans, Fish and Sediments from a Submarine Canyon (NW Mediterranean). Prog. Oceanogr. 2013, 118, 260–272. [Google Scholar] [CrossRef]
- Siscar, R.; Koenig, S.; Torreblanca, A.; Solé, M. The Role of Metallothionein and Selenium in Metal Detoxification in the Liver of Deep-Sea Fish from the NW Mediterranean Sea. Sci. Total Environ. 2014, 466–467, 898–905. [Google Scholar] [CrossRef]
- Ribalta, C.; Sanchez-Hernandez, J.C.; Sole, M. Hepatic Biotransformation and Antioxidant Enzyme Activities in Mediterranean Fish from Different Habitat Depths. Sci. Total Environ. 2015, 532, 176–183. [Google Scholar] [CrossRef]
- D’Onghia, G.; Politou, C.Y.; Bozzano, A.; Lloris, D.; Rotllant, G.; Sión, L.; Mastrototaro, F. Deep-Water Fish Assemblages in the Mediterranean Sea. Sci. Mar. 2004, 68, 87–99. [Google Scholar] [CrossRef]
- Fanelli, E.; Papiol, V.; Cartes, J.; Rumolo, P.; López-Pérez, C. Trophic Webs of Deep-Sea Megafauna on Mainland and Insular Slopes of the NW Mediterranean: A Comparison by Stable Isotope Analysis. Mar. Ecol. Prog. Ser. 2013, 490, 199–221. [Google Scholar] [CrossRef]
- Fernandez-Arcaya, U.; Rotllant, G.; Ramirez-Llodra, E.; Recasens, L.; Aguzzi, J.; Flexas, M.M.; Sanchez-Vidal, A.; López-Fernández, P.; García, J.A.; Company, J.B. Reproductive Biology and Recruitment of the Deep-Sea Fish Community from the NW Mediterranean Continental Margin. Prog. Oceanogr. 2013, 118, 222–234. [Google Scholar] [CrossRef]
- Godin, D.V.; Garnett, M.E. Species-Related Variations in Tissue Antioxidant Status—I. Differences in Antioxidant Enzyme Profiles. Comp. Biochem. Physiol. Part B Comp. Biochem. 1992, 103, 737–742. [Google Scholar] [CrossRef]
- Janssens, B.J.; Childress, J.J.; Baguet, F.; Rees, J.-F. Reduced Enzymatic Antioxidative Defense in Deep-Sea Fish. J. Exp. Biol. 2000, 203, 3717–3725. [Google Scholar] [CrossRef]
- Koenig, S.; Fernández, P.; Company, J.B.; Huertas, D.; Solé, M. Are Deep-Sea Organisms Dwelling within a Submarine Canyon More at Risk from Anthropogenic Contamination than Those from the Adjacent Open Slope? A Case Study of Blanes Canyon (NW Mediterranean). Prog. Oceanogr. 2013, 118, 249–259. [Google Scholar] [CrossRef]
- Lemaire, B.; Priede, I.; Collins, M.; Bailey, D.; Schtickzelle, N.; Thomé, J.; Rees, J. Effects of Organochlorines on Cytochrome P450 Activity and Antioxidant Enzymes in Liver of Roundnose Grenadier Coryphaenoides Rupestris. Aquat. Biol. 2010, 8, 161–168. [Google Scholar] [CrossRef]
- Koenig, S.; Porte, C.; Solé, M.; Sturve, J. Biliary PAH and Alkylphenol Metabolites, Biomarker Enzyme Activities, and Gene Expression Levels in the Deep-Sea Fish Alepocephalus rostratus. Environ. Sci. Technol. 2013, 47, 2854–2861. [Google Scholar] [CrossRef]
- Ferro, D.; Franchi, N.; Mangano, V.; Bakiu, R.; Cammarata, M.; Parrinello, N.; Santovito, G.; Ballarin, L. Characterization and Metal-Induced Gene Transcription of Two New Copper Zinc Superoxide Dismutases in the Solitary Ascidian Ciona Intestinalis. Aquat. Toxicol. 2013, 140–141, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; Ferro, D.; Bakiu, R.; Ballarin, L.; Santovito, G. Typical 2-Cys Peroxiredoxins as a Defense Mechanism against Metal-Induced Oxidative Stress in the Solitary Ascidian Ciona Robusta. Antioxidants 2022, 11, 93. [Google Scholar] [CrossRef]
- Lavut, A.; Raveh, D. Sequestration of Highly Expressed mRNAs in Cytoplasmic Granules, P-Bodies, and Stress Granules Enhances Cell Viability. PLoS Genet. 2012, 8, e1002527. [Google Scholar] [CrossRef] [PubMed]
- Nicorelli, E.; Gerdol, M.; Buonocore, F.; Pallavicini, A.; Scapigliati, G.; Guidolin, L.; Irato, P.; Corrà, F.; Santovito, G. First Evidence of T Cell Restricted Intracellular Antigen (TIA) Protein Gene Expression in Antarctic Fish. Invertebr. Surviv. J. 2018, 15, 127. [Google Scholar]
- Drago, L.; Peronato, A.; Franchi, N.; Ballarin, L.; Bakiu, R.; Santovito, G. Stress Granules in Ciona Robusta: First Evidences of TIA-1-Related Nucleolysin and Tristetraprolin Gene Expression under Metal Exposure. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2021, 243, 108977. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Ji, Q.; Song, J.; Wang, L.; Liu, B.; Wang, J.; Li, C. The Function of Apostichopus Japonicas Catalase in Sea Cucumber Intestinal Immunity. Aquaculture 2020, 521, 735103. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Zhang, H.; Liu, R.; Chen, S.; Lin, L. Analysis of Environmental Selection Pressure of Superoxide Dismutase in Deep-Sea Sea Cucumber. J. Oceanol. Limnol. 2024, 42, 893–904. [Google Scholar] [CrossRef]
- Andriashev, A.P.; Stein, D.L. Review of the Snailfish Genus Careproctus (Liparidae, Scorpaeniformes) in Antarctic and Adjacent Waters. Contrib. Sci. 1998, 470, 1–63. [Google Scholar] [CrossRef]
- Eastman, J.T.; Lannoo, M.J. Morphology of the Brain and Sense Organs in the Snailfish Paraliparis Devriesi: Neural Convergence and Sensory Compensation on the Antarctic Shelf. J. Morphol. 1998, 237, 213–236. [Google Scholar] [CrossRef]
- Jung, A.; Johnson, P.; Eastman, J.T.; DeVries, A.L. Protein Content and Freezing Avoidance Properties of the Subdermal Extracellular Matrix and Serum of the Antarctic Snailfish, Paraliparis Devriesi. Fish Physiol. Biochem. 1995, 14, 71–80. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakiu, R.; Piva, E.; Pacchini, S.; Santovito, G. Antioxidant Systems in Extremophile Marine Fish Species. J. Mar. Sci. Eng. 2024, 12, 1280. https://doi.org/10.3390/jmse12081280
Bakiu R, Piva E, Pacchini S, Santovito G. Antioxidant Systems in Extremophile Marine Fish Species. Journal of Marine Science and Engineering. 2024; 12(8):1280. https://doi.org/10.3390/jmse12081280
Chicago/Turabian StyleBakiu, Rigers, Elisabetta Piva, Sara Pacchini, and Gianfranco Santovito. 2024. "Antioxidant Systems in Extremophile Marine Fish Species" Journal of Marine Science and Engineering 12, no. 8: 1280. https://doi.org/10.3390/jmse12081280
APA StyleBakiu, R., Piva, E., Pacchini, S., & Santovito, G. (2024). Antioxidant Systems in Extremophile Marine Fish Species. Journal of Marine Science and Engineering, 12(8), 1280. https://doi.org/10.3390/jmse12081280