Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Global Overview
4.2. Epifaunal Species
4.3. Endofaunal Species
5. Discussion
5.1. Results of Living versus Dead Specimens
- H. elegans at stations B (550 m) and WH (1993 m);
- U. mediterranea at stations B (550 m) and A (1000 m);
- U. peregrina at stations B (550 m), A (1000 m), and FP11 (1600 m);
- Globobulimina spp. at stations K (650 m) and A (1000 m).
5.2. Comparison between Analytical Approaches
5.3. Choice of Species for Paleoceanographic Reconstructions
5.3.1. Towards a Global Calibration Dataset?
5.3.2. U. mediterranea vs. U. peregrina
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Station | Water Depth (m) | Species | D/L | Depth inside the Sediment (cm) | Fe/Ca | 1 s | Instrument |
---|---|---|---|---|---|---|---|
B | 550 | H. elegans | L | 0.5–1 | n.d. | n.d. | * |
B | 550 | H. elegans | L | 1–1.5 | 0.036 | 0.003 | X |
B | 550 | H. elegans | L | 1.5–2 | 0.032 | 0.002 | X |
B | 550 | H. elegans | D | 2–2.5 | n.d. | n.d. | X |
B | 550 | H. elegans | D | 2–2.5 | n.d. | n.d. | X |
B | 550 | H. elegans | D | 2–2.5 | 0.101 | 0.001 | * |
FP11 | 1600 | H. elegans | L | 0–0.5 | n.d. | n.d. | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | n.d. | n.d. | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | n.d. | n.d. | * |
WH | 1993 | H. elegans | L | 0–0.5 | 0.069 | 0.005 | X |
WH | 1993 | H. elegans | L | 0–0.5 | 0.103 | 0.007 | X |
WH | 1993 | H. elegans | D | 0–0.5 | n.d. | n.d. | X |
WH | 1993 | H. elegans | D | 0–0.5 | n.d. | n.d. | * |
WH | 1993 | H. elegans | L | 0.5–1 | n.d. | n.d. | * |
G | 400 | H. balthica | L | 0–0.5 | n.d. | n.d. | X |
G | 400 | H. balthica | L | 0–0.5 | n.d. | n.d. | X |
G | 400 | H. balthica | L | 0–0.5 | 0.098 | 0.001 | * |
G | 400 | H. balthica | L | 0–0.5 | 0.082 | 0.001 | * |
B | 550 | H. balthica | L | 1–1.5 | 0.102 | 0.007 | X |
B | 550 | H. balthica | L | 1–1.5 | 0.101 | 0.007 | X |
B | 550 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
B | 550 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | * |
B | 550 | U. mediterranea | D | 1–1.5 | 0.063 | 0.005 | X |
B | 550 | U. mediterranea | D | 1–1.5 | 0.042 | 0.003 | X |
B | 550 | U. mediterranea | D | 1.5–2 | n.d. | n.d. | * |
FP12 | 800 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.030 | 0.002 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.107 | 0.008 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.083 | 0.006 | X |
A | 1000 | U. mediterranea | L | 0.5–1 | n.d. | n.d. | * |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.031 | 0.002 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.085 | 0.006 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.087 | 0.006 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | n.d. | n.d. | * |
G | 400 | U. peregrina | L | 0–0.5 | 0.101 | 0.007 | X |
G | 400 | U. peregrina | L | 0–0.5 | 0.046 | 0.003 | X |
B | 550 | U. peregrina | L | 0–0.5 | 0.109 | 0.008 | X |
B | 550 | U. peregrina | L | 0.5–1 | 0.105 | 0.008 | X |
B | 550 | U. peregrina | D | 0.5–1 | 0.113 | 0.008 | X |
B | 550 | U. peregrina | L | 1–1.5 | 0.104 | 0.007 | X |
B | 550 | U. peregrina | D | 1–1.5 | 0.084 | 0.006 | X |
A | 1000 | U. peregrina | L | 0–0.5 | 0.053 | 0.004 | X |
A | 1000 | U. peregrina | D | 5.5–6.5 | 0.066 | 0.001 | * |
A | 1000 | U. peregrina | D | 5.5–6.5 | 0.100 | 0.001 | * |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.041 | 0.003 | X |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.044 | 0.001 | X |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 0.015 | 0.001 | * |
FP11 | 1600 | U. peregrina | D | 3–3.5 | n.d. | n.d. | * |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.107 | 0.008 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.093 | 0.007 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.034 | 0.002 | X |
C | 250 | M. barleanus | L | 0.5–1 | 0.100 | 0.001 | * |
C | 250 | M. barleanus | L | 5–6 | 0.095 | 0.002 | * |
C | 250 | M. barleanus | L | 5–6 | 0.099 | 0.001 | * |
FP13 | 375 | M. barleanus | L | 1–1.5 | n.d. | n.d. | * |
B | 550 | M. barleanus | D | 1.5–2 | 0.101 | 0.001 | * |
K | 650 | M. barleanus | D | 6–8 | 0.092 | 0.001 | * |
A | 1000 | M. barleanus | D | 3–3.5 | 0.101 | 0.001 | * |
C | 250 | Globobulimina spp. | L | 3.5–4 | 0.104 | 0.008 | X |
C | 250 | Globobulimina spp. | L | 3.5–4 | 0.066 | 0.005 | X |
FP13 | 375 | Globobulimina spp. | L | 5–6 | 0.105 | 0.008 | X |
B | 550 | Globobulimina spp. | D | 1.5–2 | 0.036 | 0.003 | X |
K | 650 | Globobulimina spp. | D | 2–3 | 0.029 | 0.002 | X |
K | 650 | Globobulimina spp. | L | 3–4 | 0.066 | 0.005 | X |
E | 750 | Globobulimina spp. | L | 2–2.5 | 0.103 | 0.009 | X |
A | 1000 | Globobulimina spp. | L | 1–1.5 | 0.047 | 0.003 | X |
A | 1000 | Globobulimina spp. | D | 4–5 | 0.105 | 0.008 | X |
References
- IPCC. Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. Approved Synthesis Report of the IPCC Sixth Assessment Report (AR6). 2023. Available online: https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf (accessed on 10 April 2017).
- EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 2004, 429, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.M. New oceanic proxies for paleoclimate. Earth Planet. Sci. Lett. 2002, 203, 1–13. [Google Scholar] [CrossRef]
- Katz, M.E.; Cramer, B.S.; Franzese, A.; Honisch, B.; Miller, K.G.; Rosenthal, Y.; Wright, J.D. Traditional and emerging geochemical proxies in foraminifera. J. Foraminifer. Res. 2010, 40, 165–192. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J.; Marchitto, T.M. Tracers of past ocean circulation. In The Oceans and Marine Geochemistry, 2nd ed.; Mottl, M.J., Elderfield, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Oomori, T. Distribution coefficient of Mg2+ ions between calcite and solutions at 10–50 °C. Mar. Chem. 1987, 20, 327. [Google Scholar] [CrossRef]
- Cusack, M.; Freer, A. Biomineralization: Elemental and Organic Influence in Carbonate Systems. Chem. Rev. 2008, 108, 4433–4454. [Google Scholar] [CrossRef] [PubMed]
- DeVilliers, S.; Greaves, M.; Elderfield, H. An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochem. Geophys. Geosyst. 2002, 3, 2001GC000169. [Google Scholar] [CrossRef]
- Fernandez, D.P.; Gagnon, A.C.; Adkins, J.F. An Isotope Dilution ICP-MS Method for the Determination of Mg/Ca and Sr/Ca Ratios in Calcium Carbonate. Geostand. Geoanalytical Res. 2011, 35, 23–37. [Google Scholar] [CrossRef]
- Harding, D.J.; Arden, J.W.; Rickaby, R.E.M. A method for precise analysis of trace element/calcium ratios in carbonate samples using quadrupole inductively coupled plasma mass spectrometry. Geochem. Geophys. Geosyst. 2006, 7, Q06003. [Google Scholar] [CrossRef]
- Hathorne, E.C.; Alard, O.; James, R.H.; Rogers, N.W. Determination of intratest variability of trace elements in foraminifera by laser ablation inductively coupled plasma-mass spectrometry. Geochem. Geophys. Geosyst. 2003, 4, 8408. [Google Scholar] [CrossRef]
- Johnstone, H.J.H.; Yu, J.; Elderfield, H.; Schulz, M. Improving temperature estimates derived from Mg/Ca of planktonic foraminifera using X-ray computed tomography-based dissolution index, XDX. Paleoceanography 2011, 26, 17. [Google Scholar] [CrossRef]
- Marchitto, T.M. Precise multi-elemental ratios in small foraminiferal samples determined by sector field ICP-MS. Geochem. Geophys. Geosyst. 2006, 7, Q05P13. [Google Scholar] [CrossRef]
- Roman, M.; Ferretti, P.; Cairns, W.R.L.; Spolaor, A.; Turetta, C.; Barbante, C. High speed-low volume automated ICP-QMS method for determination of Mg/Ca in biogenic calcite. J. Anal. At. Spectrom. 2019, 34, 764–773. [Google Scholar] [CrossRef]
- Shen, C.C.; Chiu, H.Y.; Chiang, H.W.; Chu, M.F.; Wei, K.Y.; Steinke, S.; Chen, M.T.; Lin, Y.S.; Lo, L. High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry. Chem. Geol. 2007, 236, 339–349. [Google Scholar] [CrossRef]
- Yu, J.; Day, J.; Greaves, M.; Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 2005, 6, Q08P01. [Google Scholar] [CrossRef]
- Danelian, T.; Eynaud, F. Advances in micropaleontology: 60th anniversary special volume. Rev. De Micropaleontol. 2018, 61, 111–112. [Google Scholar] [CrossRef]
- Erez, J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Biominer. Rev. Mineral. Geochem. 2003, 54, 115–149. [Google Scholar] [CrossRef]
- Jorissen, F.J.; De Stiger, H.C.; Widmark, J.G.V. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 1995, 26, 3–15. [Google Scholar] [CrossRef]
- Fontanier, C.; Jorissen, F.J.; Licari, L.; Alexandre, A.; Anschutz, P.; Carbonel, P. Live benthic foraminiferal faunas from the Bay of Biscay: Faunal density, composition, and microhabitats. Deep-Sea Res. I 2002, 49, 751–785. [Google Scholar] [CrossRef]
- Elderfield, H.; Bertram, C.J.; Erez, J. Biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate. Earth Planet. Sci. Lett. 1996, 142, 409–423. [Google Scholar] [CrossRef]
- Elderfield, H.; Ganssen, G. Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 2000, 405, 442–445. [Google Scholar] [CrossRef]
- Lea, D.W.; Mashiotta, T.A.; Spero, H.J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim. Cosmochim. Acta 1999, 63, 2369–2379. [Google Scholar] [CrossRef]
- Lea, D.W.; Pak, D.K.; Spero, H.J. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations. Science 2000, 289, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Lear, C.H.; Elderfield, H.; Wilson, P.A. Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science 2000, 287, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, N.; Lear, C.H.; Jakobsson, M.; Stranne, C.; O’Regan, M.; Cronin, T.M.; Gukov, A.Y.; Coxall, H.K. Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature calibrations: New constraints at low temperatures. Geochim. Cosmochim. Acta 2018, 236, 240–259. [Google Scholar] [CrossRef]
- Elderfield, H.; Yu, J.; Anand, P.; Kiefer, T.; Nyland, B. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth Planet. Sci. Lett. 2006, 250, 633–649. [Google Scholar] [CrossRef]
- Elderfield, H.; Greaves, M.; Barker, S.; Hall, I.R.; Tripati, A.; Ferretti, P.; Crowhurst, S.; Booth, L.; Daunt, C. A record of bottom water temperature and seawater d18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat. Sci. Rev. 2010, 29, 160–169. [Google Scholar] [CrossRef]
- Mawbey, E.M.; Hendry, K.H.; Greaves, M.J.; Hillenbrand, C.; Kuhn, G.; Spencer-Jones, C.L.; McClymont, E.L.; Vadman, K.J.; Shevenell, A.E.; Jernas, P.E.; et al. Mg/Ca-Temperature Calibration of Polar Benthic foraminifera species for reconstruction of bottom water temperatures on the Antarctic shelf. Geochim. Cosmochim. Acta 2020, 283, 54–66. [Google Scholar] [CrossRef]
- Stirpe, C.R.; Allen, K.A.; Sikes, E.L.; Zhou, X.; Rosenthal, Y.; Cruz-Uribe, A.M.; Brooks, H.L. The Mg/Ca proxy for temperature: A Uvigerina core-top study in the Southwest Pacific. Geochim. Cosmochim. Acta 2021, 309, 299–312. [Google Scholar] [CrossRef]
- Tisserand, A.A.; Dokken, T.M.; Waelbroeck, C.; Gherardi, J.-M.; Scao, V.; Fontanier, C.; Jorissen, F. Refining benthic foraminiferal Mg/Ca-temperature calibrations using core-tops from the western tropical Atlantic: Implication for paleotemperature estimation. Geochem. Geophys. Geosyst. 2013, 14, 929–946. [Google Scholar] [CrossRef]
- Yu, Z.; Lei, Y.; Li, T.; Zhang, S.; Xiong, Z. Mg and Sr uptake in benthic foraminifera Ammonia aomoriensis based on culture and field studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 520, 229–239. [Google Scholar] [CrossRef]
- Dissard, D.; Nehrke, G.; Reichart, G.J.; Bijma, J. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments. Geochim. Cosmochim. Acta 2010, 74, 928–940. [Google Scholar] [CrossRef]
- Dissard, D.; Nehrke, G.; Reichart, G.J.; Bijma, J. Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: Results from culturing experiments with Ammonia tepida. Biogeosciences 2010, 7, 81–93. [Google Scholar] [CrossRef]
- Evans, D.; Erez, J.; Oron, S.; Müller, W. Mg/Ca temperature and seawater-test chemistry relationships in the shallow-dwelling large benthic foraminifera Operculina ammonoides. Geochim. Cosmochim. Acta 2015, 148, 325–342. [Google Scholar] [CrossRef]
- Filipsson, H.L.; Bernhard, J.M.; Lincoln, S.A.; McCorkle, D.C. A culture-based calibration of benthic foraminiferal paleotemperature proxies: Delta O-18 and Mg/Ca results. Biogeosciences 2010, 7, 1335–1347. [Google Scholar] [CrossRef]
- Hintz, C.J.; Shaw, T.J.; Chandler, G.T.; Bernhard, J.M.; McCorkle, D.C.; Blanks, J.K. Trace/minor element: Calcium ratios in cultured benthic foraminifera. Part I: Inter-species and inter-individual variability. Geochim. Cosmochim. Acta 2006, 70, 1952–1963. [Google Scholar] [CrossRef]
- Hintz, C.J.; Shaw, T.J.; Bernhard, J.M.; Chandler, G.T.; McCorkle, D.C.; Blanks, J.K. Trace/minor element: Calcium ratios in cultured benthic foraminifera. Part II: Ontogenetic variation. Geochim. Cosmochim. Acta 2006, 70, 1964–1976. [Google Scholar] [CrossRef]
- Levi, A.; Müller, W.; Erez, J. Intrashell Variability of Trace elements in Benthic Foraminifera Grown under High CO2 Levels. Front. Earth Sci. 2019, 7, 453029. [Google Scholar] [CrossRef]
- Not, C.; Thibodeau, B.; Yokoyama, Y. Incorporation of Mg, Sr, Ba, U, and B in high-Mg calcite benthic foraminifers cultured under controlled pCO2. Geochem. Geophys. Geosyst. 2018, 19, 83–98. [Google Scholar] [CrossRef]
- Yu, J.; Elderfield, H. Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation. Earth Planet. Sci. Lett. 2008, 276, 129–139. [Google Scholar] [CrossRef]
- Barker, S.; Greaves, M.; Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 2003, 4, 8407. [Google Scholar] [CrossRef]
- Yu, J.; Elderfield, H.; Greaves, M.; Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 2007, 8, Q06016. [Google Scholar] [CrossRef]
- Lorens, R.B. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 1981, 45, 553–561. [Google Scholar] [CrossRef]
- Morse, J.W.; Bender, M.L. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chem. Geol. 1990, 82, 265–277. [Google Scholar] [CrossRef]
- Tang, J.; Köhler, S.J.; Dietzel, M. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochim. Cosmochim. Acta 2008, 72, 3718–3732. [Google Scholar] [CrossRef]
- Mojtahid, M.; Depuydt, P.; Mouret, A.; Le Houedec, S.; Fiorini, S.; Chollet, S.; Massol, F.; Dohou, F.; Filipsson, H.; Boer, W.; et al. Assessing the impact of different carbonate system parameters on benthic foraminifera from controlled growth experiments. Chem. Geol. 2023, 623, 121396. [Google Scholar] [CrossRef]
- Raitzsch, M.; Dueñas-Bohórquez, A.; Reichart, G.-J.; de Nooijer, L.J.; Bickert, T. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: Impact of calcium concentration and associated calcite saturation state. Biogeosciences 2010, 7, 869–881. [Google Scholar] [CrossRef]
- Ma, R.; Sepulcre, S.; Bassinot, L.; Haurine, F.; Tisnérat-Laborde, N.; Colin, C. North Indian Ocean circulation since the last deglaciation as inferred from new elemental ratio records for benthic foraminifera Hoeglundina elegans. Paleoceanogr. Paleoclimatol. 2020, 35, e2019PA003801. [Google Scholar] [CrossRef]
- Yu, J.; Elderfield, H.; Jin, Z.; Tomascak, P.; Rohling, E.J. Controls on Sr/Ca in benthic foraminifera and implications for seawater Sr/Ca during the late Pleistocene. Quat. Sci. Rev. 2014, 98, 1–6. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Boyle, E.A.; Slowey, N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta 1997, 61, 3633–3643. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J.; Adkins, J.F.; Curry, W.B.; Dokken, T.; Hall, I.R.; Herguera, J.C.; Hirschi, J.J.-M.; Ivanova, E.V.; Kissel, C.; Marchal, O.; et al. Atlantic Meridional Overturning Circulation during the Last Glacial Maximum. Science 2007, 316, 66–69. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. Annu. Rev. Mar. Sci. 2017, 9, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Mojtahid, M.; Griveaud, C.; Fontanier, C.; Anschutz, P.; Jorissen, F.J. Live benthic foraminiferal faunas along a bathymetrical transect (140–4800 m) in the Bay of Biscay (NE Atlantic). Rev. Micropaleontol. 2010, 53, 139e162. [Google Scholar] [CrossRef]
- Lewis, E.; Wallace, D. CO2SYS.EXE, Program Developed for CO2 System Calculations; Brookhaven National Laboratory and Institut für Meereskunde: Hamburg, Germany, 2000. Available online: http://cdiac.esd.ornl.gov/oceans/co2rprt.html (accessed on 10 April 2017).
- Schlitzer, R. Electronic Atlas of WOCE Hydrographic and Tracer Data Now Available. Eos T. Am. Geophys. Un. 2000, 81, 45. [Google Scholar] [CrossRef]
- Tréguer, P.; Le Corre, P.; Grall, J.R. The seasonal variations of nutri ents in the upper waters of the Bay of Biscay region and their relation to phytoplanktonic growth. Deep-Sea Res. 1979, 26, 1121–1152. [Google Scholar] [CrossRef]
- Van Aken, H.M. The hydrography of the mid-latitude northeast Atlantic Ocean: The thermocline water mass. Deep-Sea Res. I 2000, 48, 237–267. [Google Scholar] [CrossRef]
- Van Aken, H.M. The hydrography of the mid-latitude Northeast Atlantic Ocean: The deep water masses. Deep-Sea Res. I 2000, 47, 757–788. [Google Scholar] [CrossRef]
- Van Aken, H.M. The hydrography of the mid-latitude Northeast Atlantic Ocean: The intermediate water masses. Deep-Sea Res. I 2000, 47, 789–824. [Google Scholar] [CrossRef]
- McCorkle, D.C.; Martin, P.A.; Lea, D.W.; Klinkhammer, G.P. Evidence of a Dissolution Effect on Benthic Foraminiferal Shell Chemistry-Delta-C-13, Cd/Ca, Ba/Ca, and Sr/Ca Results from the Ontong Java Plateau. Paleoceanography 1995, 10, 699–714. [Google Scholar] [CrossRef]
- Mojtahid, M.; Jorissen, F.J.; Garcia, J.; Schiebel, R.; Michel, E.; Eynaud, F.; Gillet, H.; Cremer, M.; Diz Ferreiro, P.; Siccha, M.; et al. High resolution Holocene record in the southeastern Bay of Biscay: Global versus regional climate signals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 377, 28–44. [Google Scholar] [CrossRef]
- Fontanier, C.; Jorissen, F.J.; Chaillou, G.; David, C.; Anschutz, P.; Lafon, V. Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay. Deep-Sea Res. I 2003, 50, 457–494. [Google Scholar] [CrossRef]
- Walton, W.R. Techniques for recognition of living Foraminifera. Contrib. Cushman Found. Foraminifer. Res. 1952, 3, 56–60. [Google Scholar]
- Coadic, R.; Bassinot, F.; Douville, E.; Michel, E.; Dissard, D.; Greaves, M. A core-top study of dissolution effect on B/Ca in Globigerinoides sacculifer from the tropical Atlantic: Potential bias for paleo-reconstruction of seawater carbonate chemistry. Geochem. Geophys. Geosyst. 2013, 14, 1053–1068. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Lear, C.H.; Oppo, D.W.; Linsley, B.K. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography 2006, 21. [Google Scholar] [CrossRef]
- Allison, N.; Austin, W.E.N. Serial Mg/Ca and Sr/Ca chronologies across single benthic foraminifera tests. Chem. Geol. 2008, 253, 83–88. [Google Scholar] [CrossRef]
- Kristjánsdóttir, G.B.; Lea, D.W.; Jennings, A.E.; Pak, D.K.; Belanger, C. New spatial Mg/Ca-temperature calibrations for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature for the past 4000 years. Geochem. Geophys. Geosyst. 2007, 8, Q03P21. [Google Scholar] [CrossRef]
- Hasenfratz, A.P.; Schiebel, R.; Thornalley, D.J.R.; Schönfeld, J.; Jaccard, S.L.; MartínezGarcía, A.; Holbourn, A.; Jennings, A.E.; Kuhnt, W.; Lear, C.H.; et al. Mg/Ca-temperature calibration for the benthic foraminifera Melonis barleeanum and Melonis pompilioides. Geochim. Cosmochim. Acta 2017, 217, 365–383. [Google Scholar] [CrossRef]
- Skinner, L.C.; Shackleton, N.J.; Elderfiled, H. Millennial-scale variability of deep-water temperature and d18 Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP. Geochem. Geophys. Geosyst. 2003, 4, 1098. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Perron-Cashman, S.; Lear, C.H.; Bard, E.; Barker, S.; Billups, K.; Bryan, M.; Delaney, M.L.; Dwyer, G.S.; Elderfield, H.; et al. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochem. Geophys. Geosyst. 2004, 5, Q04D09. [Google Scholar] [CrossRef]
- Keul, N.; Langer, G.; Thoms, S.; De Nooijer, L.J.; Reichart, G.; Bijma, J. Exploring foraminiferal Sr/Ca as a new carbonate system proxy. Geochim. Cosmochim. Acta 2017, 202, 374–386. [Google Scholar] [CrossRef]
- Boyle, E.A.; Keigwin, L.D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 1985, 76, 135–150. [Google Scholar] [CrossRef]
- Pak, D.K.; Lea, D.W.; Kennett, J.P. A sediment trap time series of foraminiferal Mg/Ca and d18O. Eos Trans. AGU 2000, 81, F662. [Google Scholar]
- Anand, P.; Elderfield, H.; Conte, M.H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 2003, 18, 1050. [Google Scholar] [CrossRef]
- Pak, D.K.; Lea, D.W.; Kennett, J.P. Seasonal and interannual variation in Santa Barbara Basin water temperatures observed in sediment trap foraminiferal Mg/Ca. Geochem. Geophys. Geosyst. 2004, 5, Q12008. [Google Scholar] [CrossRef]
- Bryan, S.P.; Marchitto, T.M. Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 2008, 23, PA2220. [Google Scholar] [CrossRef]
- Martin, W.R.; Sayles, F.L. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochim. Cosmochim. Acta 1996, 60, 243–263. [Google Scholar] [CrossRef]
- Martin, W.R.; Sayles, F.L. Organic matter oxidation in deep-sea sediments: Distribution in the sediment column and implications for calcite dissolution. Deep-Sea Res. II 2006, 53, 771–792. [Google Scholar] [CrossRef]
Station | Location | Depth (m) | T(°C) | Salinity (psu) | [O2] (mmol.L−1) | Δ[CO32−]calcite mmol.mol−1 | Δ[CO32−]aragonite mmol.mol−1 | |
---|---|---|---|---|---|---|---|---|
C | 43°40′08 N | 1°38′87 W | 250 | 11.8 | 35.6 * | 225 | 99.2 | 74.5 |
FP13 | 43°42′21 N | 1°59′56 W | 375 | 11.4 | 35.6 | 218 | 95.8 | 71.2 |
G | 43°40′20 N | 1°36′40 W | 400 | 11.3 | 35.6 * | 222 | 95.0 | 70.3 |
B | 43°50′31 N | 2°03′47 W | 550 | 10.8 | 35.6 | 210 | 86.8 | 62.1 |
K | 44°32′52 N | 3°37′23 W | 650 | 10.5* | 35.6 * | 202 | 72.6 | 55.2 |
E | 43°46′06 N | 1°48′03 W | 750 | 10.4 | 35.7 * | 199 | 79.9 | 54.4 |
FP12 | 43°59′98 N | 2°15′12 W | 800 | 10.2 | 35.7 | 175 | 79.1 | 50.8 |
A | 44°10′24 N | 2°20′06 W | 1000 | 9.7 | 35.8 | 195 | 75.5 | 49.4 |
FP11 | 44°27′76 N | 2°39′46 W | 1600 | 5.8 | 35.3 | 250 | 74.0 | 47.9 |
WH | 43°37′73 N | 1°43′62 W | 1993 | 4.1 | 35.1 | 261 | 72.6 | 47.9 |
Station | Depth (m) | H. elegans | H. balthica | U. mediterranea | U. peregrina | M. barleeanum | Globobulimina spp. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | D | L | D | L | D | L | D | L | D | L | D | ||
C | 250 | 1(*1) + 1(*2) | 1(*2) | ||||||||||
FP13 | 375 | 1(*1) | 1(*1) | ||||||||||
G | 400 | 1(*2) | |||||||||||
B | 550 | 3(*1) | 1(*4) | 1(*4) + 1(*2) | 1(*2) | 1(*3) | 2(*1) | 2(*1) | 1(*1) | 1(*1) | |||
K | 650 | 1(*1) | 1(*1) | 1(*1) | |||||||||
E | 750 | 1(*1) | |||||||||||
FP12 | 800 | 1(*3) | |||||||||||
A | 1000 | 1(*3) + 1(*1) | 1(*4) | 1(*1) | 1(*2) | 1(*1) | 1(*1) | 1(*1) | |||||
FP11 | 1600 | 1(*3) | 1(*2) | 1(*2) | |||||||||
WH | 1993 | 1(*2) + 1(*1) | 1(*2) | 1(*3) |
Station | Water Depth (m) | Species | D/L | Depth inside the Sediment (cm) | Mg/Ca | 1 s | Sr/Ca | 1 s | Instrument |
---|---|---|---|---|---|---|---|---|---|
B | 550 | H. elegans | L | 0.5–1 | 2.416 | 0.027 | 1.741 | 0.014 | * |
B | 550 | H. elegans | L | 1–1.5 | 0.778 | 0.010 | 5.213 | 0.052 | X |
B | 550 | H. elegans | L | 1.5–2 | 0.701 | 0.009 | 5.005 | 0.050 | X |
B | 550 | H. elegans | D | 2–2.5 | 0.969 | 0.013 | 2.764 | 0.028 | X |
B | 550 | H. elegans | D | 2–2.5 | 1.297 | 0.017 | 2.835 | 0.028 | X |
B | 550 | H. elegans | D | 2–2.5 | 1.292 | 0.014 | 5.165 | 0.041 | * |
FP11 | 1600 | H. elegans | L | 0–0.5 | 2.533 | 0.033 | 0.393 | 0.004 | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | 2.411 | 0.031 | 0.352 | 0.004 | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | 1.117 | 0.012 | 0.646 | 0.005 | * |
WH | 1993 | H. elegans | L | 0–0.5 | 0.573 | 0.007 | 1.394 | 0.014 | X |
WH | 1993 | H. elegans | L | 0–0.5 | 0.771 | 0.010 | 1.578 | 0.016 | X |
WH | 1993 | H. elegans | D | 0–0.5 | 0.278 | 0.004 | 1.338 | 0.013 | X |
WH | 1993 | H. elegans | D | 0–0.5 | 1.385 | 0.015 | 0.485 | 0.004 | * |
WH | 1993 | H. elegans | L | 0.5–1 | 0.715 | 0.008 | 0.574 | 0.005 | * |
G | 400 | H. balthica | L | 0–0.5 | 3.486 | 0.045 | 3.377 | 0.034 | X |
G | 400 | H. balthica | L | 0–0.5 | 3.756 | 0.049 | 3.460 | 0.035 | X |
G | 400 | H. balthica | L | 0–0.5 | 6.366 | 0.070 | 1.579 | 0.013 | * |
G | 400 | H. balthica | L | 0–0.5 | 6.143 | 0.068 | 1.607 | 0.013 | * |
B | 550 | H. balthica | L | 1–1.5 | 4.029 | 0.052 | 3.578 | 0.036 | X |
B | 550 | H. balthica | L | 1–1.5 | 3.581 | 0.047 | 3.489 | 0.035 | X |
B | 550 | U. mediterranea | L | 0–0.5 | 1.174 | 0.015 | 2.472 | 0.025 | X |
B | 550 | U. mediterranea | L | 0–0.5 | 1.087 | 0.012 | 1.517 | 0.012 | * |
B | 550 | U. mediterranea | D | 1–1.5 | 1.126 | 0.015 | 2.325 | 0.023 | X |
B | 550 | U. mediterranea | D | 1–1.5 | 1.127 | 0.015 | 2.594 | 0.026 | X |
B | 550 | U. mediterranea | D | 1.5–2 | 1.148 | 0.013 | 2.375 | 0.019 | * |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 0.776 | 0.010 | 2.410 | 0.024 | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 1.319 | 0.017 | 2.533 | 0.025 | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 1.014 | 0.013 | 2.506 | 0.025 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 1.059 | 0.014 | 2.572 | 0.026 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.898 | 0.012 | 2.556 | 0.026 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.959 | 0.012 | 2.546 | 0.025 | X |
A | 1000 | U. mediterranea | L | 0.5–1 | 1.170 | 0.013 | 2.835 | 0.023 | * |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.179 | 0.015 | 2.563 | 0.026 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.055 | 0.014 | 2.446 | 0.024 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.800 | 0.010 | 2.523 | 0.025 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.173 | 0.013 | 1.506 | 0.012 | * |
G | 400 | U. peregrina | L | 0–0.5 | 1.808 | 0.024 | 2.724 | 0.027 | X |
G | 400 | U. peregrina | L | 0–0.5 | 2.589 | 0.034 | 2.624 | 0.026 | X |
B | 550 | U. peregrina | L | 0–0.5 | 1.638 | 0.021 | 2.563 | 0.026 | X |
B | 550 | U. peregrina | L | 0.5–1 | 1.598 | 0.021 | 2.588 | 0.026 | X |
B | 550 | U. peregrina | D | 0.5–1 | 1.216 | 0.016 | 2.646 | 0.026 | X |
B | 550 | U. peregrina | L | 1–1.5 | 1.430 | 0.019 | 2.630 | 0.026 | X |
B | 550 | U. peregrina | D | 1–1.5 | 1.039 | 0.014 | 2.593 | 0.026 | X |
A | 1000 | U. peregrina | L | 0–0.5 | 1.317 | 0.017 | 2.557 | 0.026 | X |
A | 1000 | U. peregrina | D | 5.5–6.5 | 1.966 | 0.022 | 1.185 | 0.009 | * |
A | 1000 | U. peregrina | D | 5.5–6.5 | 1.970 | 0.022 | 1.222 | 0.010 | * |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.900 | 0.012 | 2.381 | 0.024 | X |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.968 | 0.013 | 2.456 | 0.025 | X |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 2.149 | 0.024 | 1.120 | 0.009 | * |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 1.701 | 0.019 | 1.118 | 0.009 | * |
WH | 1993 | U. peregrina | D | 0–0.5 | 1.271 | 0.017 | 2.169 | 0.022 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.976 | 0.013 | 2.207 | 0.022 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.791 | 0.010 | 2.290 | 0.023 | X |
C | 250 | M. barleaanum | L | 0.5–1 | 3.121 | 0.034 | 1.324 | 0.011 | * |
C | 250 | M. barleaanum | L | 5–6 | 2.903 | 0.032 | 1.327 | 0.011 | * |
C | 250 | M. barleaanum | L | 5–6 | 2.487 | 0.027 | 1.292 | 0.010 | * |
FP13 | 375 | M. barleaanum | L | 1–1.5 | 1.596 | 0.018 | 1.204 | 0.010 | * |
B | 550 | M. barleaanum | D | 1.5–2 | 1.905 | 0.021 | 1.317 | 0.011 | * |
K | 650 | M. barleaanum | D | 6–8 | 2.783 | 0.031 | 1.427 | 0.011 | * |
A | 1000 | M. barleaanum | D | 3–3.5 | 2.857 | 0.031 | 1.367 | 0.011 | * |
C | 250 | Globobulimina spp. | L | 3.5–4 | 4.169 | 0.054 | 2.500 | 0.025 | X |
C | 250 | Globobulimina spp. | L | 3.5–4 | 4.092 | 0.053 | 2.557 | 0.026 | X |
FP13 | 375 | Globobulimina spp. | L | 5–6 | 4.307 | 0.056 | 2.596 | 0.026 | X |
B | 550 | Globobulimina spp. | D | 1.5–2 | 6.842 | 0.089 | 2.477 | 0.025 | X |
K | 650 | Globobulimina spp. | D | 2–3 | 3.728 | 0.048 | 2.535 | 0.025 | X |
K | 650 | Globobulimina spp. | L | 3–4 | 4.951 | 0.064 | 2.602 | 0.026 | X |
E | 750 | Globobulimina spp. | L | 2–2.5 | 3.081 | 0.040 | 2.545 | 0.025 | X |
A | 1000 | Globobulimina spp. | L | 1–1.5 | 6.299 | 0.082 | 2.498 | 0.025 | X |
A | 1000 | Globobulimina spp. | D | 4–5 | 0.994 | 0.013 | 2.007 | 0.020 | X |
Sta-tion | Water Depth (m) | Species | D/L | Depth inside the Sediment (cm) | Average Mg/Ca (mmol.mol−1) | 1 s | Mg/Ca External Reproducibility | Average Sr/Ca (mmol.mol−1) | 1 s | Sr/Ca External Reproducibility | n= | Instru-ment |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 550 | H. elegans | L | 1–1.5 | 0.740 | 0.054 | 7.3% | 5.109 | 0.147 | 2.9% | 2 | X |
B | 550 | H. elegans | D | 2–2.5 | 1.133 | 0.232 | 21% | 2.799 | 0.050 | 1.8% | 2 | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | 2.472 | 0.087 | 3.5% | 0.373 | 0.029 | 7.9% | 2 | X |
WH | 1993 | H. elegans | L | 0–0.5 | 0.672 | 0.140 | 21% | 1.486 | 0.130 | 8.7% | 2 | X |
G | 400 | H. balthica | L | 0–0.5 | 3.621 | 0.191 | 5.3% | 3.419 | 0.059 | 1.7% | 2 | X |
G | 400 | H. balthica | L | 0–0.5 | 6.255 | 0.157 | 2.5% | 1.593 | 0.020 | 1.2% | 2 | * |
B | 550 | H. balthica | L | 1–1.5 | 3.805 | 0.317 | 8.3% | 3.533 | 0.063 | 1.8% | 2 | X |
B | 550 | U. mediterranea | D | 1–1.5 | 1.127 | 0.001 | 0.1% | 5.459 | 0.191 | 7.8% | 2 | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 1.037 | 0.272 | 26% | 2.483 | 0.065 | 2.6% | 3 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.972 | 0.081 | 8.3% | 2.558 | 0.013 | 0.5% | 3 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.011 | 0.193 | 19% | 2.511 | 0.060 | 2.4% | 3 | X |
G | 400 | U. peregrina | L | 0–0.5 | 2.198 | 0.552 | 25% | 2.674 | 0.071 | 2.7% | 2 | X |
B | 550 | U. peregrina | L | 0–0.5 | 1.618 | 0.029 | 1.8% | 2.576 | 0.018 | 0.7% | 2 | X |
A | 1000 | U. peregrina | D | 5.5–6.5 | 1.968 | 0.003 | 0.2% | 1.203 | 0.026 | 2.2% | 2 | * |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.934 | 0.048 | 5.2% | 2.418 | 0.053 | 2.2% | 2 | X |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 1.925 | 0.317 | 17% | 1.119 | 0.002 | 0.1% | 2 | * |
WH | 1993 | U. peregrina | D | 0–0.5 | 1.012 | 0.242 | 24% | 2.222 | 0.062 | 2.8% | 3 | X |
C | 250 | M. barleanus | L | 5–6 | 2.695 | 0.294 | 11% | 1.310 | 0.025 | 1.9% | 2 | * |
C | 250 | Globobulimina spp. | L | 3.5–4 | 4.130 | 0.054 | 1.3% | 2.528 | 0.040 | 1.6% | 2 | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepulcre, S.; Tribondeau, M.; Bassinot, F.; Mojtahid, M.; Nardelli, M.-P.; Dessandier, P.-A.; Bonnin, J. Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic. J. Mar. Sci. Eng. 2024, 12, 736. https://doi.org/10.3390/jmse12050736
Sepulcre S, Tribondeau M, Bassinot F, Mojtahid M, Nardelli M-P, Dessandier P-A, Bonnin J. Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic. Journal of Marine Science and Engineering. 2024; 12(5):736. https://doi.org/10.3390/jmse12050736
Chicago/Turabian StyleSepulcre, Sophie, Marion Tribondeau, Franck Bassinot, Meryem Mojtahid, Maria-Pia Nardelli, Pierre-Antoine Dessandier, and Jérôme Bonnin. 2024. "Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic" Journal of Marine Science and Engineering 12, no. 5: 736. https://doi.org/10.3390/jmse12050736
APA StyleSepulcre, S., Tribondeau, M., Bassinot, F., Mojtahid, M., Nardelli, M.-P., Dessandier, P.-A., & Bonnin, J. (2024). Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic. Journal of Marine Science and Engineering, 12(5), 736. https://doi.org/10.3390/jmse12050736