A Spatial Correlation Identification Model for Coherent Structure Extraction and Three-Dimensional Visualization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, D.B.; Wu, P.R.; Monico, R.O.; Chen, G.N. Dynamic mode decomposition for large-scale coherent structure extraction in shear flows. IEEE Trans. Vis. Comput. Graph. 2023, 29, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.Y.; Koken, M.; Constantinescu, G. Approximate methodology to account for effects of coherent structures on sediment entrainment in rans simulations with a movable bed and applications to pier scour. Adv. Water Resour. 2018, 120, 65–82. [Google Scholar] [CrossRef]
- Nolan, P.J.; Foroutan, H.; Ross, S.D. Pollution transport patterns obtained through generalized lagrangian coherent structures. Atmosphere 2020, 11, 168. [Google Scholar] [CrossRef]
- Sandeepan, B.S.; Rakesh, P.T.; Venkatesan, R. Observation and simulation of boundary layer coherent roll structures and their effect on pollution dispersion. Atmos. Res. 2013, 120, 181–191. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Q.C.; Liu, L.; Cheng, X.L.; Hu, F. Important role of turbulent wind gust and its coherent structure in the rapid removal of urban air pollution. Environ. Res. Commun. 2022, 4, 075001. [Google Scholar] [CrossRef]
- Talke, S.A.; Horner-Devine, A.R.; Chickadel, C.C.; Jessup, A.T. Turbulent kinetic energy and coherent structures in a tidal river. J. Geophys. Res.-Ocean. 2013, 118, 6965–6981. [Google Scholar] [CrossRef]
- Farooq, S.; Huarte-Espinosa, M.; Ostilla-Mónico, R. Large-scale structures in high-Reynolds-number rotating Waleffe flow. J. Fluid Mech. 2020, 884, A26. [Google Scholar] [CrossRef]
- Li, X.; Hu, F.; Pu, Y.F.; Al-Jiboori, M.H.; Hu, Z.X.; Hong, Z.X. Identification of coherent structures of turbulence at the atmospheric surface layer. Adv. Atmos. Sci. 2002, 19, 687–698. [Google Scholar]
- Peacock, T.; Haller, G. Lagrangian coherent structures the hidden skeleton of fluid flows. Phys. Today 2013, 66, 41–47. [Google Scholar] [CrossRef]
- Saddoughi, S.G.; Veeravalli, S.V. Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 2006, 348, 201–245. [Google Scholar] [CrossRef]
- Khurshid, S.; Donzis, D.A.; Sreenivasan, K.R. Slow spectral transfer and energy cascades in isotropic turbulence. J. Fluid Mech. 2021, 908, A21. [Google Scholar] [CrossRef]
- Siddiqui, M.; Loewen, M.R.; Asher, W.E.; Jessup, A.T. Coherent structures beneath wind waves and their influence on air-water gas transfer. J. Geophys. Res. Ocean. 2004, 109, C03024. [Google Scholar] [CrossRef]
- Gurka, R.; Liberzon, A.; Hetsroni, G. Pod of vorticity fields: A method for spatial characterization of coherent structures. Int. J. Heat Fluid Flow 2006, 27, 416–423. [Google Scholar] [CrossRef]
- Li, D.D.; Zhao, B.D.; Wang, J.W. Data-driven identification of coherent structures in gas-solid system using proper orthogonal decomposition and dynamic mode decomposition. Phys. Fluids 2023, 35, 013321. [Google Scholar] [CrossRef]
- Yin, S.; Fan, Y.F.; Sandberg, M.; Li, Y.G. PIV based POD analysis of coherent structures in flow patterns generated by triple interacting buoyant plumes. Build. Environ. 2019, 158, 165–181. [Google Scholar] [CrossRef]
- Bulusu, K.V.; Plesniak, M.W. Shannon entropy-based wavelet transform method for autonomous coherent structure identification in fluid flow field data. Entropy 2015, 17, 6617–6642. [Google Scholar] [CrossRef]
- Gong, X.; Ma, X.Y.; Fan, Z.Y.; Zhang, X.; Jiang, N. Wavelet analysis of the coherent structures in airfoil leading-edge separation control by bionic coverts. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 2023, 237, 2076–2089. [Google Scholar] [CrossRef]
- Lucia, C.; Gassmann, M.I. Wavelet analysis of coherent structures above maize and soybean crops. Bound.-Layer Meteor. 2022, 184, 231–249. [Google Scholar]
- Lotfy, E.R.; Zaki, S.A.; Harun, Z. Modulation of the atmospheric turbulence coherent structures by mesoscale motions. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 178. [Google Scholar] [CrossRef]
- Ostilla-Mónico, R.; Verzicco, R.; Grossmann, S.; Lohse, D. The near-wall region of highly turbulent Taylor-Couette flow. J. Fluid Mech. 2016, 788, 95–117. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2; NASA: Washington, DC, USA, 1988. [Google Scholar]
- Perry, A.E.; Chong, M.S. A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech. 2003, 19, 125–155. [Google Scholar] [CrossRef]
- Haller, G. Lagrangian Coherent Structures. Annu. Rev. Fluid Mech. 2015, 47, 137–162. [Google Scholar] [CrossRef]
- Martins, F.; Sciacchitano, A.; Rival, D.E. Detection of vortical structures in sparse Lagrangian data using coherent-structure colouring. Exp. Fluids 2021, 62, 69. [Google Scholar] [CrossRef]
- Schlueter-Kuck, K.L.; Dabiri, J.O. Coherent structure colouring: Identification of coherent structures from sparse data using graph theory. J. Fluid Mech. 2017, 811, 468–486. [Google Scholar] [CrossRef]
- Acevedo, O.C.; Costa, F.D.; Oliveira, P.; Puhales, F.S.; Degrazia, G.A.; Roberti, D.R. The influence of submeso processes on stable boundary layer similarity relationships. J. Atmos. Sci. 2014, 71, 207–225. [Google Scholar] [CrossRef]
- Basu, S.; Porte-Agel, F.; Foufoula-Georgiou, E.; Vinuesa, J.F.; Pahlow, M. Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor. 2006, 119, 473–500. [Google Scholar] [CrossRef]
- Conangla, L.; Cuxart, J.; Soler, M.R. Characterisation of the nocturnal boundary layer at a site in northern Spain. Bound.-Layer Meteor. 2008, 128, 255–276. [Google Scholar] [CrossRef]
- Diabil, H.A.; Li, X.K.; Abdalla, I.E. Numerical study of a separated boundary layer transition over two and three dimensional geometrical shapes. World Sci. Eng. Acad. Soc. 2017, 16, 45–72. [Google Scholar]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. Digit. Arch. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Jiang, X.Y. Revisiting coherent structures in low-speed turbulent boundary layers. Appl. Math. Mech.-Engl. Ed. 2019, 40, 261–272. [Google Scholar] [CrossRef]
- Zhou, J.; Adrian, R.J.; Balachandar, S.; Kendall, T.M. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 1999, 387, 353–396. [Google Scholar] [CrossRef]
- Hu, H.B.; Du, P.; Huang, S.H.; Wang, Y. Extraction and verification of coherent structures in near-wall turbulence. Chin. Phys. B 2013, 22, 74703. [Google Scholar] [CrossRef]
- Wu, J.Y.; Nichols, A.; Krynkin, A.; Croft, M. Objective phase-space identification of coherent turbulent structures in 1d time series data. J. Hydraul. Res. 2022, 60, 811–825. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, T.; Xing, J.; Mei, J.Q. Improvement of the HHT method and application in weak vortex signal detection. Meas. Sci. Technol. 2007, 18, 2769–2776. [Google Scholar] [CrossRef]
- Abraham, A.; Hong, J.R. Characterization of atmospheric coherent structures and their impact on a utility-scale wind turbine. Flow 2022, 2, E5. [Google Scholar] [CrossRef]
- Alekseenko, S.V.; Abdurakipov, S.S.; Hrebtov, M.Y.; Tokarev, M.P.; Dulin, V.M.; Markovich, D.M. Coherent structures in the near-field of swirling turbulent jets: A tomographic PIV study. Int. J. Heat Fluid Flow 2018, 70, 363–379. [Google Scholar] [CrossRef]
- Sun, J.; Gao, T.D.; Fan, Y.; Chen, W.Y.; Xuan, R.X. The modulation of particles on coherent structure of turbulent boundary layer in dilute liquid-solid two-phase flow with PIV. Powder Technol. 2019, 344, 883–896. [Google Scholar] [CrossRef]
- Tang, Z.Q.; Jiang, N.; Schröder, A.; Geisler, R. Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow. Acta Mech. Sin. 2012, 28, 572–582. [Google Scholar] [CrossRef]
- Liu, C.Q.; Wang, Y.Q.; Yang, Y.; Duan, Z.W. New omega vortex identification method. Sci. China-Phys. Mech. Astron. 2016, 59, 684711. [Google Scholar] [CrossRef]
- Sakurai, T.; Yoshimatsu, K.; Schneider, K.; Farge, M.; Morishita, K.; Ishihara, T. Coherent structure extraction in turbulent channel flow using boundary adapted wavelets. J. Turbul. 2017, 18, 352–372. [Google Scholar] [CrossRef]
- Bolado-Penagos, M.; Sala, I.; Gomiz-Pascual, J.J.; González, C.J.; Izquierdo, A.; Alvarez, O.; Vázquez, A.; Bruno, M.; van Haren, H. Analysis of internal soliton signals and their eastward propagation in the Alboran sea: Exploring the effect of subinertial forcing and fortnightly variability. Prog. Oceanogr. 2023, 217, 103077. [Google Scholar] [CrossRef]
- van Haren, H.; Bakker, R.; Witte, Y.; Laan, M.; van Heerwaarden, J. Half a cubic hectometer mooring array of 3000 temperature sensors in the deep sea. J. Atmos. Ocean. Technol. 2021, 38, 1585–1597. [Google Scholar] [CrossRef]
- Yang, C.F.; Chi, W.C.; van Haren, H.; Lin, C.R.; Kuo, B.Y. Tracking deep-sea internal wave propagation with a differential pressure gauge array. Sci. Rep. 2021, 11, 23311. [Google Scholar] [CrossRef]
- Bulusu, K.V.; Plesniak, M.W. Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration. Exp. Fluids 2013, 54, 1493. [Google Scholar] [CrossRef]
- Fang, R.Z.; Wang, Y.; Lan, C.X.; Zhang, Z.J.; Zheng, D.; Lan, G.D.; Wang, B.M. Detecting near-surface coherent structure characteristics using wavelet transform with different meteorological elements. J. Trop. Meteorol. 2020, 26, 453–460. [Google Scholar]
- Protzko, D.E.; Guimond, S.R.; Jackson, C.R.; Sapp, J.W.; Jelenak, Z.; Chang, P.S. Documenting coherent turbulent structures in the boundary layer of intense hurricanes through wavelet analysis on IWRAP and SAR data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4105316. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Huang, N.E. The time-dependent intrinsic correlation based on the empirical mode decomposition. Adv. Adapt. Data Anal. 2010, 2, 1000047. [Google Scholar] [CrossRef]
- Johny, K.; Pai, M.L.; Adarsh, S. A multivariate EMD-LSTM model aided with time dependent intrinsic cross-correlation for monthly rainfall prediction. Appl. Soft. Comput. 2022, 123, 108941. [Google Scholar] [CrossRef]
- Luo, J.; Wang, N.A.; Zheng, Z.C.; Li, T.X.; He, S.Q.; Tarolli, P. Tillage-induced microtopography alters time-dependent intrinsic correlation of runoff and sediment yield. Soil Tillage Res. 2022, 221, 105423. [Google Scholar] [CrossRef]
- Medina, O.D.; Schmitt, F.G.; Calif, R.; Germain, G.; Gaurier, B. Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production. Renew. Energy 2017, 112, 314–327. [Google Scholar] [CrossRef]
- Hadjighasem, A.; Karrasch, D.; Teramoto, H.; Haller, G. A spectral clustering approach to Lagrangian vortex detection. APS Meet. Abstr. 2015, 93, 063107. [Google Scholar] [CrossRef]
- Derian, P.; Heas, P.; Memin, E. Wavelets to reconstruct turbulence multifractals from experimental image sequences, TSFP7. In Proceedings of the 7th International Symposium on Turbulence and Shear Flow Phenomena, Ottawa, ON, Canada, 28–31 July 2011; Begel House Inc.: New York, NY, USA, 2011. [Google Scholar]
- Goodman, L.; Levine, E.R.; Lueck, R.G. On measuring the terms of the turbulent kinetic energy budget from an AUV. J. Atmos. Ocean. Technol. 2006, 23, 977–990. [Google Scholar] [CrossRef]
- Nasmyth, P.W. Oceanic Turbulence; University of British Columbia: Vancouver, BC, USA, 1970. [Google Scholar]
- Vassilicos, J.C. Dissipation in Turbulent Flows. Annu. Rev. Fluid Mech. 2015, 47, 95–114. [Google Scholar] [CrossRef]
- Wolk, F.; Yamazaki, H.; Seuront, L.; Lueck, R.G. A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Ocean. Technol. 2002, 19, 780–793. [Google Scholar] [CrossRef]
- Luan, X.; Mao, B.B.; Ren, X.M.; Yang, H.; Teng, Y.R.; Song, D.L. Turbulent cascade in the multi-layered network. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019. [Google Scholar]
- Li, H. Identification of coherent structure in turbulent shear flow with wavelet correlation analysis. J. Fluids Eng.-Trans. ASME 1998, 120, 778–785. [Google Scholar] [CrossRef]
- Yule, A.J. Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 1978, 89, 413–432. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, B.; Yang, H.; Sun, F.; Zhang, Y.; Zhang, X. A Spatial Correlation Identification Model for Coherent Structure Extraction and Three-Dimensional Visualization. J. Mar. Sci. Eng. 2024, 12, 483. https://doi.org/10.3390/jmse12030483
Mao B, Yang H, Sun F, Zhang Y, Zhang X. A Spatial Correlation Identification Model for Coherent Structure Extraction and Three-Dimensional Visualization. Journal of Marine Science and Engineering. 2024; 12(3):483. https://doi.org/10.3390/jmse12030483
Chicago/Turabian StyleMao, Beibei, Hua Yang, Fei Sun, Ying Zhang, and Xinrui Zhang. 2024. "A Spatial Correlation Identification Model for Coherent Structure Extraction and Three-Dimensional Visualization" Journal of Marine Science and Engineering 12, no. 3: 483. https://doi.org/10.3390/jmse12030483
APA StyleMao, B., Yang, H., Sun, F., Zhang, Y., & Zhang, X. (2024). A Spatial Correlation Identification Model for Coherent Structure Extraction and Three-Dimensional Visualization. Journal of Marine Science and Engineering, 12(3), 483. https://doi.org/10.3390/jmse12030483