Mitigating Genotype–Environment Interaction Effects in a Genetic Improvement Program for Liptopenaeus vannamei
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Population
2.2. Breeding and Rearing
2.3. Test Environments and Trait Measurements
2.4. Statistical Analysis
2.4.1. Separate Analysis of Tank and Pond Environments
2.4.2. Combined Analysis of Both Tank and Pond Data
3. Results
3.1. Characteristics of the Population and Data Structure
3.2. Descriptive Statistics
3.3. Heritability
3.4. Correlations
3.5. Genotype-by-Environment Interactions
4. Discussion
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falconer, D.; Mackay, T. Introduction to Quantitative Genetics; Longmans Green: Harlow, UK, 1996; Volume 4. [Google Scholar]
- Wu, H.; Eckhardt, C.M.; Baccarelli, A.A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 2023, 24, 332–344. [Google Scholar] [CrossRef]
- Boye, C.; Nirmalan, S.; Ranjbaran, A.; Luca, F. Genotype × environment interactions in gene regulation and complex traits. Nat. Genet. 2024, 56, 1057–1068. [Google Scholar] [CrossRef]
- Fodor, I.; Spoelstra, M.; Calus, M.P.L.; Kamphuis, C. A systematic review of genotype-by-climate interaction studies in cattle, poultry and chicken. Front. Anim. Sci. 2023, 4, 1324830. [Google Scholar] [CrossRef]
- Napier, J.D.; Heckman, R.W.; Juenger, T.E. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. Plant Cell 2022, 35, 109–124. [Google Scholar] [CrossRef]
- Eknath, A.E.; Bentsen, H.B.; Ponzoni, R.W.; Rye, M.; Nguyen, N.H.; Thodesen, J.; Gjerde, B. Genetic improvement of farmed tilapias: Composition and genetic parameters of a synthetic base population of Oreochromis niloticus for selective breeding. Aquaculture 2007, 273, 1–14. [Google Scholar] [CrossRef]
- Fong, C.R.; Gonzales, C.M.; Rennick, M.; Gardner, L.D.; Halpern, B.S.; Froehlich, H.E. Global yield from aquaculture systems. Rev. Aquac. 2024, 16, 1021–1029. [Google Scholar] [CrossRef]
- Trọng, T.Q.; Mulder, H.A.; van Arendonk, J.A.M.; Komen, H. Heritability and genotype by environment interaction estimates for harvest weight, growth rate, and shape of Nile tilapia (Oreochromis niloticus) grown in river cage and VAC in Vietnam. Aquaculture 2013, 384–387, 119–127. [Google Scholar] [CrossRef]
- Torrecillas, S.; Rimoldi, S.; Montero, D.; Serradell, A.; Acosta, F.; Fontanillas, R.; Allal, F.; Haffray, P.; Bajek, A.; Terova, G. Genotype x nutrition interactions in European sea bass (Dicentrarchus labrax): Effects on gut health and intestinal microbiota. Aquaculture 2023, 574, 739639. [Google Scholar] [CrossRef]
- Oikonomou, S.; Kazlari, Z.; Loukovitis, D.; Dimitroglou, A.; Kottaras, L.; Tzokas, K.; Barkas, D.; Katribouzas, N.; Papaharisis, L.; Chatziplis, D. Genetic Parameters and Genotype × Diet Interaction for Body Weight Performance and Fat in Gilthead Seabream. Animals 2023, 13, 180. [Google Scholar] [CrossRef]
- Sae-Lim, P.; Gjerde, B.; Nielsen, H.M.; Mulder, H.; Kause, A. A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Rev. Aquac. 2016, 8, 369–393. [Google Scholar] [CrossRef]
- Nguyen, H.N. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: Achievements, lessons and challenges. Fish Fish. 2016, 17, 483–506. [Google Scholar] [CrossRef]
- Khang, P.V.; Phuong, T.H.; Dat, N.K.; Knibb, W.; Nguyen, N.H. An 8-Year Breeding Program for Asian Seabass Lates calcarifer: Genetic Evaluation, Experiences, and Challenges. Front. Genet. 2018, 9, 191. [Google Scholar] [CrossRef]
- Gonzalez, C.; Gallardo-Hidalgo, J.; Yáñez, J.M. Genotype-by-environment interaction for growth in seawater and freshwater in Atlantic salmon (Salmo salar). Aquaculture 2022, 548, 737674. [Google Scholar] [CrossRef]
- Mengistu, S.B.; Mulder, H.A.; Benzie, J.A.H.; Khaw, H.L.; Megens, H.-J.; Trinh, T.Q.; Komen, H. Genotype by environment interaction between aerated and non-aerated ponds and the impact of aeration on genetic parameters in Nile tilapia (Oreochromis niloticus). Aquaculture 2020, 529, 735704. [Google Scholar] [CrossRef]
- Castillo-Juárez, H.; Casares, J.C.Q.; Campos-Montes, G.; Villela, C.C.; Ortega, A.M.; Montaldo, H.H. Heritability for body weight at harvest size in the Pacific white shrimp, Penaeus (Litopenaeus) vannamei, from a multi-environment experiment using univariate and multivariate animal models. Aquaculture 2007, 273, 42–49. [Google Scholar] [CrossRef]
- Ibarra, A.; Famula, T. Genotype by environment interaction for adult body weights of shrimp Penaeus vannamei when grown at low and high densitie. Genet. Sel. Evol. 2008, 40, 541–551. [Google Scholar] [CrossRef]
- Campos-Montes, G.R.; Montaldo, H.H.; Martínez-Ortega, A.; Castillo-Juárez, H. Genotype by environment interaction effects for body weight at 130 days of age in the Pacific white shrimp [Penaeus (Litopenaeus) vannamei]. Vet. Mex. 2009, 40, 255–268. [Google Scholar]
- Tan, J.; Luan, S.; Luo, K.; Guan, J.; Li, W.; Sui, J.; Guo, Z.; Xu, S.; Kong, J. Heritability and genotype by environment interactions for growth and survival in Litopenaeus vannamei at low and high densities. Aquacult. Res. 2017, 48, 1430–1438. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Ninh, N.H.; Hung, N.H. Evaluation of two genetic lines of Pacific White leg shrimp Liptopenaeus vannamei selected in tank and pond environments. Aquaculture 2020, 516, 734522. [Google Scholar] [CrossRef]
- Gilmour, A.; Gogel, B.; Cullis, B.; Welham, S.; Thompson, R. ASReml User Guide Release 4.1 Structural Specification; VSN International Ltd.: Hemel Hempstead, UK, 2015. [Google Scholar]
- Robertson, A. The Sampling Variance of the Genetic Correlation Coefficient. Biometrics 1959, 15, 469–485. [Google Scholar] [CrossRef]
- de Araújo, F.C.T.; de Oliveira, C.A.L.; Campos, E.C.; Yoshida, G.M.; Lewandowski, V.; Todesco, H.; Nguyen, N.H.; Ribeiro, R.P. Effects of genotype × environment interaction on the estimation of genetic parameters and gains in Nile tilapia. J. Appl. Genet. 2020, 61, 575–580. [Google Scholar] [CrossRef]
- Tollervey, M.J.; Bekaert, M.; González, A.B.; Agha, S.; Houston, R.D.; Doeschl-Wilson, A.; Norris, A.; Migaud, H.; Gutierrez, A.P. Assessing genotype–environment interactions in Atlantic salmon reared in freshwater loch and recirculating systems. Evol. Appl. 2024, 17, e13751. [Google Scholar] [CrossRef]
- Hasan, M.M.; Thomson, P.C.; Raadsma, H.W.; Khatkar, M.S. Genetic analysis of digital image derived morphometric traits of black tiger shrimp (Penaeus monodon) by incorporating G× E investigations. Front. Genet. 2022, 13, 1007123. [Google Scholar] [CrossRef]
- Hasan, M.M.; Thomson, P.C.; Raadsma, H.W.; Khatkar, M.S. A Review and Meta-Analysis of Genotype by Environment Interaction in Commercial Shrimp Breeding. Genes 2024, 15, 1222. [Google Scholar] [CrossRef]
- Barros, J.; Winkler, F.M.; Velasco, L.A. Heritability, genetic correlations and genotype-environment interactions for growth and survival of larvae and post-larvae of the Caribbean scallop, Argopecten nucleus (Mollusca: Bivalvia). Aquaculture 2018, 495, 948–954. [Google Scholar] [CrossRef]
- Enez, F.; Puyo, S.; Boudry, P.; Lapègue, S.; Dégremont, L.; Gonzalez-Araya, R.; Morvezen, R.; Chapuis, H.; Haffray, P. Strong genotype-by-environment interaction across contrasted sites for summer mortality syndrome in the Pacific oyster Crassostrea gigas. Aquaculture 2025, 595, 741501. [Google Scholar] [CrossRef]
- Hamilton, M.G.; Mekkawy, W.; Alam, M.B.; Barman, B.K.; Karim, M.; Benzie, J.A.H. Genotype-by-culture-system interaction in catla and silver carp: Monoculture and biculture. Aquaculture 2023, 562, 738846. [Google Scholar] [CrossRef]
- Freitas, M.V.; Lira, L.V.G.; Ariede, R.B.; Agudelo, J.F.G.; Oliveira Neto, R.R.d.; Borges, C.H.S.; Mastrochirico-Filho, V.A.; Garcia Neto, B.F.; Carvalheiro, R.; Hashimoto, D.T. Genotype by environment interaction and genetic parameters for growth traits in the Neotropical fish pacu (Piaractus mesopotamicus). Aquaculture 2021, 530, 735933. [Google Scholar] [CrossRef]
- Ponzoni, R.W.; Nguyen, N.H.; Khaw, H.L.; Ninh, N.H. Accounting for genotype by environment interaction in economic appraisal of genetic improvement programs in common carp Cyprinus carpio. Aquaculture 2008, 285, 47–55. [Google Scholar] [CrossRef]
- Mulder, H.; Bijma, P. Effects of genotype× environment interaction on genetic gain in breeding programs 1. J. Anim. Sci. 2005, 83, 49–61. [Google Scholar] [CrossRef]
- Crossa, J.; Montesinos-López, O.A.; Pérez-Rodríguez, P.; Costa-Neto, G.; Fritsche-Neto, R.; Ortiz, R.; Martini, J.W.R.; Lillemo, M.; Montesinos-López, A.; Jarquin, D.; et al. Genome and Environment Based Prediction ModelsPrediction models and Methods of Complex TraitsComplex traits Incorporating Genotype × Environment Interaction. In Genomic Prediction of Complex Traits: Methods and Protocols; Ahmadi, N., Bartholomé, J., Eds.; Springer: New York, NY, USA, 2022; pp. 245–283. [Google Scholar]
- Madsen, M.D.; van der Werf, J.H.J.; Clark, S. Macro- and micro-genetic environmental sensitivity of yearling weight in Angus beef cattle. Animal 2024, 18, 101068. [Google Scholar] [CrossRef]
- Raunsgard, A.; Persson, L.; Czorlich, Y.; Ugedal, O.; Thorstad, E.B.; Karlsson, S.; Fiske, P.; Bolstad, G.H. Variation in phenotypic plasticity across age-at-maturity genotypes in wild Atlantic salmon. Mol. Ecol. 2024, 33, e17229. [Google Scholar] [CrossRef]
- Olesen, I.; Groen, A.F.; Gjerde, B. Definition of animal breeding goals for sustainable production systems. J. Anim. Sci. 2000, 78, 570–582. [Google Scholar] [CrossRef]
Generation | Environment | Dam | Sire | Full-Sibs (Half-Sibs) | No. of Progeny |
---|---|---|---|---|---|
G8 (2021–2022) | Pond | 102 | 86 | 100 (32) | 12,425 |
Tank | 102 | 86 | 100 (32) | 12,425 | |
Both | 102 | 86 | 100 (32) | 24,850 | |
G9 (2022–2023) | Pond | 120 | 104 | 96 (31) | 8009 |
Tank | 120 | 104 | 96 (31) | 8009 | |
Both | 120 | 104 | 96 (31) | 16,018 | |
Both G8 and G9 | Pond | 222 | 190 | 196 (63) | 20,431 |
Tank | 222 | 190 | 196 (63) | 20,431 | |
Both | 222 | 190 | 196 (63) | 40,862 |
Trait | Environment | n | Mean | SD | CV (%) |
---|---|---|---|---|---|
Weight, g | Pond | 16,259 | 19.747 | 4.1 | 53.7 |
Tank | 8176 | 19.879 | 2.6 | 60.6 | |
Both | 24,435 | 19.791 | 3.7 | 53.8 | |
Length, mm | Pond | 16,260 | 136.73 | 11.1 | 58.2 |
Tank | 8176 | 138.06 | 3.5 | 86.3 | |
Both | 24,436 | 137.17 | 9.3 | 58.4 |
Trait | Environment | Genetic Variance | Environmental Variance | Phenotypic Variance | Heritability |
---|---|---|---|---|---|
Weight | Pond | 12.04 | 5.71 | 17.75 | 0.68 ± 0.04 |
Tank | 2.42 | 5.11 | 7.53 | 0.37 ± 0.03 | |
Both | 12.31 | 3.94 | 16.25 | 0.76 ± 0.04 | |
Length | Pond | 32.46 | 47.01 | 79.47 | 0.41 ± 0.04 |
Tank | 16.61 | 8.16 | 24.77 | 0.67 ± 0.08 | |
Both | 63.92 | 22.70 | 86.62 | 0.74 ± 0.04 |
Generation | Environment | Phenotypic Correlation | Genetic Correlation |
---|---|---|---|
Both G8 and G9 | Pond | 0.93 ± 0.006 | 0.97 ± 0.005 |
Tank | 0.85 ± 0.009 | 0.95 ± 0.001 | |
Both | 0.92 ± 0.004 | 0.99 ± 0.001 |
Generation | Trait | Genetic Correlations between the Two Environments |
---|---|---|
G8 (2021–2022) | Weight | −0.149 ± 0.117 |
Length | −0.072 ± 0.126 | |
G9 (2022–2023) | Weight | 0.61 ± 0.09 |
Length | 0.52 ± 0.13 | |
Both G8 and G9 | Weight | 0.65 ± 0.04 |
Length | 0.60 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huong, T.T.M.; Hung, N.H.; Ty, V.D.; Tru, D.C.; Nguyen, N.H. Mitigating Genotype–Environment Interaction Effects in a Genetic Improvement Program for Liptopenaeus vannamei. J. Mar. Sci. Eng. 2024, 12, 1855. https://doi.org/10.3390/jmse12101855
Huong TTM, Hung NH, Ty VD, Tru DC, Nguyen NH. Mitigating Genotype–Environment Interaction Effects in a Genetic Improvement Program for Liptopenaeus vannamei. Journal of Marine Science and Engineering. 2024; 12(10):1855. https://doi.org/10.3390/jmse12101855
Chicago/Turabian StyleHuong, Tran Thi Mai, Nguyen Huu Hung, Vu Dinh Ty, Dinh Cong Tru, and Nguyen Hong Nguyen. 2024. "Mitigating Genotype–Environment Interaction Effects in a Genetic Improvement Program for Liptopenaeus vannamei" Journal of Marine Science and Engineering 12, no. 10: 1855. https://doi.org/10.3390/jmse12101855
APA StyleHuong, T. T. M., Hung, N. H., Ty, V. D., Tru, D. C., & Nguyen, N. H. (2024). Mitigating Genotype–Environment Interaction Effects in a Genetic Improvement Program for Liptopenaeus vannamei. Journal of Marine Science and Engineering, 12(10), 1855. https://doi.org/10.3390/jmse12101855