Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics
Abstract
:1. Introduction
- Are data analysis techniques able to provide broad insights into the effects of SLR and varying river inflows on estuarine tidal dynamics?
- What are the dominant effects of SLR and altered riverine inflows on estuarine tidal properties?
- Which estuary types and locations are most vulnerable to changes in mean sea level and river inflows?
2. Methods
2.1. Numerical Modelling
2.2. Tidal Properties
2.3. Data Analysis
3. Results
3.1. Effects of SLR and/or Altered Riverine Inflows on Estuarine Tidal Range
- (i)
- SLR led to minor (weak) increases in tidal range along the estuaries (dark green coloured cells);
- (ii)
- SLR substantially increased the tidal range at the mouth and then minimally strengthened it in a landward direction (light green coloured cells).
a | b | c | d | e | f | |||
L | 40 km | 80 km | 160 km | |||||
n | 0.015 s/m1/3 | 0.03 s/m1/3 | 0.015 s/m1/3 | 0.03 s/m1/3 | 0.015 s/m1/3 | 0.03 s/m1/3 | ||
Prismatic | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 1 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 2 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 3 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 4 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 5 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 6 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 7 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 8 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
△△△△△ | △△△△△ | △▲△△△ | △△–△△ | △△△△△ | △△△△△ | 9 | ||
Low inflow (Q/TP = 1%) | ||||||||
▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△–△△ | ▲△△△△ | ▲△△△△ | 10 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
▲▽▽△△ | ▲△–△△ | ▲▽▽△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | 11 | ||
High inflow (Q/TP = 10%) | ||||||||
▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△▲△△ | ▲△△△△ | 12 | ||
Converging with CL = 160 km | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 13 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 14 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 15 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 16 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 17 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 18 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 19 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 20 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△▲△△ | ▲△△△△ | 21 | ||
Low inflow (Q/TP = 1%) | ||||||||
▲△△▽△ | ▲△△▽△ | ▲△△▽△ | ▲△-▽△ | ▲△△▽▲ | ▲△△△▲ | 22 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
▲–▲▽△ | ▲△–▽△ | ▲▽▲▽△ | ▲△△▽△ | ▲△△▽△ | ▲△△▽△ | 23 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 24 | ||
Converging with CL = 80 km | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 25 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 26 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△–△△ | △△△△△ | 27 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△△△ | △△△△△ | △△△△▲ | △△△△▲ | △△△△▲ | △△△△▲ | 28 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 29 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△▲△ | 30 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△–△ | △△△△△ | 31 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△△▲ | △△△△– | △△△△▲ | △△△△▲ | △△△–▲ | △△△△▲ | 32 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△▲△△ | △△△△△ | 33 | ||
Low inflow (Q/TP = 1%) | ||||||||
▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△▲△ | 34 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
▲▲▲▲– | ▲△▲▲▽ | ▲▲▲▲△ | ▲△△▲▽ | ▲△△▲△ | ▲△△▲△ | 35 | ||
High inflow (Q/TP = 10%) | ||||||||
▲△▲△▲ | ▲△△△△ | ▲△▲△△ | ▲△△△△ | ▲△△△▲ | ▲△△△▲ | 36 |
3.2. Effects of SLR and/or Altered Riverine Inflows on Estuarine Maximum Current Velocity
- (i)
- Compounding effects of SLR and moderate to high inflows (Q/TP = 5–10%) increased this parameter particularly in the first half of estuaries (0 x 0.5 L) (e.g., dark and light shades of red in Table 2);
- (ii)
- SLR minimally reduced this parameter when L = 40 and 80 km, TR0 = 0.5 and 1 m, and Q/TP = 0–1% (e.g., very light shades of red in Table 2).
a | b | c | d | e | f | |||
L | 40 km | 80 km | 160 km | |||||
n | 0.015 s/m1/3 | 0.03 s/m1/3 | 0.015 s/m1/3 | 0.03 s/m1/3 | 0.015 s/m1/3 | 0.03 s/m1/3 | ||
Prismatic | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
▽▽▽▽▽ | ▽▽▽▽▽ | △▽▽▽▽ | △▽▽▽▽ | △△△▽▽ | △△△▽▽ | 1 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽▽▽▽△ | ▽▽▽▽△ | △▽▽▽△ | △▽▽▽△ | △△△▽△ | △△△▽△ | 2 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 3 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 4 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
▽▽▽▽▽ | ▽▽▽▽▽ | △▽▽▽▽ | △▽▽▽▽ | △△△▽▽ | △△△▽▽ | 5 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽▽▽▽△ | ▽▽▽▽△ | △▽▽▽△ | △▽▽▽△ | △△△▽△ | △△△▽△ | 6 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 7 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 8 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
△▽△△▽ | △▽△△▽ | △▲△△▽ | △△–△▽ | △△△△▽ | △△△△▽ | 9 | ||
Low inflow (Q/TP = 1%) | ||||||||
△▽△△△ | △▽△△△ | △△△△△ | △△-△△ | △△△△△ | △△△△△ | 10 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△▲△△▲ | △△–▲▲ | △▲△△▲ | △△△▲▲ | △△△△▲ | △△△▲▲ | 11 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲▲▲▲ | ▲▲▲▲△ | ▲▲▲▲△ | ▲▲▲▲△ | ▲▲▲▲△ | ▲▲▲△△ | 12 | ||
Converging with CL = 160 km | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△△▽▽ | ▽△△▽▽ | 13 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△△△△ | ▽△△△△ | 14 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△▽△△△ | △▽△△△ | △△△△△ | △▲△△△ | △▲△△△ | △▲△△△ | 15 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 16 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△△▽▽ | ▽△△▽▽ | 17 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△△△△ | ▽△△△△ | 18 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△▽△△△ | △▽△△△ | △△△△△ | △▲△△△ | △▲△△△ | △▲△△△ | 19 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 20 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
△△△△▽ | △△△△▽ | △△△△▽ | △△△△▽ | △△▲△▽ | △△△△▽ | 21 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△▽△△ | △△▽△△ | △△▽△△ | △△–△△ | △△△△▲ | △△△▽▲ | 22 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△–△△△ | △▽–△△ | △▲△△△ | △△△△△ | △▽△△△ | △△△△△ | 23 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 24 | ||
Converging with CL = 80 km | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽△▽▽ | ▽▽△▽▽ | 25 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△▽△△ | 26 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△–△△ | △△△△▽ | 27 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲△△▲ | ▲▲△△▲ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 28 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽△▽▽ | ▽▽△▽▽ | 29 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△▽△△ | ▽△▽△△ | 30 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△▽ | △△△–▽ | △△△△▽ | 31 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲△△△ | ▲▲▽▽– | ▲▲△△△ | ▲▲△△△ | ▲▲△–△ | ▲▲△△△ | 32 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
▽△▽△▽ | ▽△▽△▽ | ▽△▽△▽ | ▽△▽△▽ | ▽△▲△▽ | ▽△△△▽ | 33 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△▽△△ | △△▽△△ | △△▽△△ | △△▽△△ | △△▽△▲ | △△▽△▲ | 34 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△▲△▲- | △▽△▲△ | △▲△▲△ | △△△△△ | △△△△△ | △△△△△ | 35 | ||
High inflow (Q/TP = 10%) | ||||||||
▲▲▲△▽ | ▲▲△△△ | ▲▲▲△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 36 |
3.3. Effects of SLR and/or Altered Riverine Inflows on Estuarine Asymmetry
a | b | c | d | e | f | |||
L | 40 km | 80 km | 160 km | |||||
n | 0.015 s/m1/3 | 0.03 s/m1/3 | 0.015 s/m1/3 | 0.03 s/m1/3 | 0.015 s/m1/3 | 0.03 s/m1/3 | ||
Prismatic | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
▽△▽△△ | ▽△▽△△ | △△▽△△ | △△▽△△ | △▲▽△△ | △▲▽△△ | 1 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽△△△△ | ▽△△△△ | △△△△△ | △△△△△ | △▲▽△△ | △▲▽△△ | 2 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△▽△△ | △△▽△△ | 3 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△▽△ | △△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | 4 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
▽△▽△△ | ▽△▽△△ | △△▽△△ | △△▽△△ | △▲▽△△ | △▲▽△△ | 5 | ||
Low inflow (Q/TP = 1%) | ||||||||
▽△△△△ | ▽△△△△ | △△△△△ | △△△△△ | △▲▽△△ | △▲▽△△ | 6 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△▽△△ | △△▽△△ | 7 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△▽△ | △△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | 8 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
△△▲△△ | △△▲△△ | △▲▲△△ | △△-△△ | △△▽△△ | △△▽△△ | 9 | ||
Low inflow (Q/TP = 1%) | ||||||||
▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△–▲▲ | ▲△▽▲▲ | ▲△▽▲▲ | 10 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
▲△△△▲ | ▲△–▼▲ | ▲△△△▲ | ▲△▽▼▲ | ▲△▽△▲ | ▲△▽▼▲ | 11 | ||
High inflow (Q/TP = 10%) | ||||||||
▲△▼▽▲ | ▲△△▽▲ | ▲△△▽▲ | ▲△△▽▲ | ▲△▽▽▲ | ▲△△▽▲ | 12 | ||
Converging with CL = 160 km | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
△△▽△△ | △△▽△△ | △△▽△△ | △△▽△△ | △△△△△ | △△△△△ | 13 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 14 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △▽△△△ | △△△△△ | △▲▽△△ | △△▽△△ | 15 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | △△▽▽△ | 16 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
△△▽△△ | △△▽△△ | △△▽△△ | △△▽△△ | △△△△△ | △△△△△ | 17 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 18 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △▽△△△ | △△△△△ | △▲▽△△ | △△▽△△ | 19 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | △△▽▽△ | 20 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△△▲▲ | ▲△▼▲▲ | ▲△△▲△ | 21 | ||
Low inflow (Q/TP = 1%) | ||||||||
▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△-▲▲ | ▲△△▲▲ | ▲△△▲▲ | 22 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
▲–▲△▲ | ▲▲–△▲ | ▲▲▲△▲ | ▲▽▽▽▲ | ▲▲▽▽▲ | ▲▽▽▽▲ | 23 | ||
High inflow (Q/TP = 10%) | ||||||||
▲△△▽▲ | ▲△▽▽▲ | ▲△△▽▲ | ▲△▽▽▲ | ▲△▽▽▲ | ▲△▽▽▲ | 24 | ||
Converging with CL = 80 km | TR0 = 0.5 m | No inflow (Q/TP = 0%) | ||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 25 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 26 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△–△▲ | △△▽△▲ | 27 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△▽▲ | △△△▽▲ | △△△▽▲ | △△△▽▲ | △△△▽△ | △△△▽△ | 28 | ||
TR0 = 1 m | No inflow (Q/TP = 0%) | |||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 29 | ||
Low inflow (Q/TP = 1%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 30 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
△△△△△ | △△△△△ | △△△△△ | △△△△▲ | △△▽-▲ | △△▽△▲ | 31 | ||
High inflow (Q/TP = 10%) | ||||||||
△△△▽▲ | △△△▽- | △△△▽▲ | △△△▽▲ | △△▽-△ | △△△▽△ | 32 | ||
TR0 = 4 m | No inflow (Q/TP = 0%) | |||||||
▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△△▲△ | 33 | ||
Low inflow (Q/TP = 1%) | ||||||||
▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△△▲▲ | ▲△△△▲ | 34 | ||
Moderate inflow (Q/TP = 5%) | ||||||||
▲▲▲▲– | ▲▽▲▲▲ | ▲▲▲▲▲ | ▲▽▽▽▲ | ▲▽▽▽▲ | ▲▽▽▽▲ | 35 | ||
High inflow (Q/TP = 10%) | ||||||||
▲△△△▲ | ▲△▽△▲ | ▲△△△▲ | ▲△▽△▲ | ▲△▽△▲ | ▲△▽△▲ | 36 |
4. Discussion
- (i)
- The most common patterns of change in tidal properties along the length of estuaries;
- (ii)
- The estuary types influenced by compounding effects of SLR and varying riverine inflows; and,
- (iii)
- The most vulnerable estuarine cross-sections.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbier, E.B. Valuing the storm protection service of estuarine and coastal ecosystems. Ecosyst. Serv. 2015, 11, 32–38. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Day, J.W., Jr.; Kemp, W.M.; Yáñez-Arancibia, A.; Crump, B.C. Estuarine Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Harrison, L.M.; Coulthard, T.J.; Robins, P.E.; Lewis, M.J. Sensitivity of estuaries to compound flooding. Estuaries Coasts 2021, 45, 1250–1269. [Google Scholar] [CrossRef]
- Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts, J.C.; Ward, P.J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; Couasnon, A.; Eilander, D.; Haigh, I.D.; Hendry, A.; Muis, S.; Veldkamp, T.I.; Winsemius, H.C.; Wahl, T. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett. 2018, 13, 084012. [Google Scholar] [CrossRef]
- Rayner, D.; Glamore, W.; Grandquist, L.; Ruprecht, J.; Waddington, K.; Khojasteh, D. Intertidal wetland vegetation dynamics under rising sea levels. Sci. Total Environ. 2021, 766, 144237. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zong, Y.; Zhang, W. Coastal inundation due to sea level rise in the Pearl River Delta, China. Nat. Hazards 2004, 33, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Riggs, S.R. Drowning the North Carolina Coast: Sea-Level Rise and Estuarine Dynamics; The National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2003. [Google Scholar]
- Valentim, J.; Vaz, N.; Silva, H.; Duarte, B.; Caçador, I.; Dias, J. Tagus estuary and Ria de Aveiro salt marsh dynamics and the impact of sea level rise. Estuar. Coast. Shelf Sci. 2013, 130, 138–151. [Google Scholar] [CrossRef]
- Vu, D.; Yamada, T.; Ishidaira, H. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol. 2018, 77, 1632–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddington, K.; Khojasteh, D.; Marshall, L.; Rayner, D.; Glamore, W. Quantifying the Effects of Sea Level Rise on Estuarine Drainage Systems. Water Resour. Res. 2022, 58, e2021WR031405. [Google Scholar] [CrossRef]
- Glamore, W.; Rayner, D.; Ruprecht, J.; Sadat-Noori, M.; Khojasteh, D. Eco-hydrology as a driver for tidal restoration: Observations from a Ramsar wetland in eastern Australia. PLoS ONE 2021, 16, e0254701. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Noori, M.; Rankin, C.; Rayner, D.; Heimhuber, V.; Gaston, T.; Drummond, C.; Chalmers, A.; Khojasteh, D.; Glamore, W. Coastal wetlands can be saved from sea level rise by recreating past tidal regimes. Sci. Rep. 2021, 11, 1196. [Google Scholar] [CrossRef]
- Cai, H.; Savenije, H.; Toffolon, M. Linking the river to the estuary: Influence of river discharge on tidal damping. Hydrol. Earth Syst. Sci. 2014, 18, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Dykstra, S.; Dzwonkowski, B. The propagation of fluvial flood waves through a backwater-estuarine environment. Water Resour. Res. 2020, 56, e2019WR025743. [Google Scholar] [CrossRef]
- Talke, S.A.; Jay, D.A. Changing tides: The role of natural and anthropogenic factors. Annu. Rev. Mar. Sci. 2020, 12, 121–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ. 2021, 780, 146470. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, D.; Lewis, M.; Tavakoli, S.; Farzadkhoo, M.; Felder, S.; Iglesias, G.; Glamore, W. Sea level rise will change estuarine tidal energy: A review. Renew. Sustain. Energy Rev. 2022, 156, 111855. [Google Scholar] [CrossRef]
- Du, J.; Shen, J.; Zhang, Y.J.; Ye, F.; Liu, Z.; Wang, Z.; Wang, Y.P.; Yu, X.; Sisson, M.; Wang, H.V. Tidal response to sea-level rise in different types of estuaries: The Importance of Length, Bathymetry, and Geometry. Geophys. Res. Lett. 2018, 45, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Khojasteh, D.; Chen, S.; Felder, S.; Heimhuber, V.; Glamore, W. Estuarine tidal range dynamics under rising sea levels. PLoS ONE 2021, 16, e0257538. [Google Scholar] [CrossRef]
- Khojasteh, D.; Hottinger, S.; Felder, S.; De Cesare, G.; Heimhuber, V.; Hanslow, D.J.; Glamore, W. Estuarine tidal response to sea level rise: The significance of entrance restriction. Estuar. Coast. Shelf Sci. 2020, 244, 106941. [Google Scholar] [CrossRef]
- Moore, R.D.; Wolf, J.; Souza, A.J.; Flint, S.S. Morphological evolution of the Dee Estuary, Eastern Irish Sea, UK: A tidal asymmetry approach. Geomorphology 2009, 103, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.; Morgan, J.A.; Horner-Devine, A.R.; Kumar, N.; Ahrendt, S. Impacts of Sea-Level Rise on Morphodynamics and Riverine Flooding in an Idealized Estuary. Water Resour. Res. 2022, 58, e2022WR032544. [Google Scholar] [CrossRef]
- Garcia-Oliva, M.; Djordjević, S.; Tabor, G.R. The influence of channel geometry on tidal energy extraction in estuaries. Renew. Energy 2017, 101, 514–525. [Google Scholar] [CrossRef]
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Hottinger, S.; Felder, S. Implications of tidal resonance and water depth on predicting sea level rise in estuaries. In Proceedings of the Australasia Coasts & Ports Conference, Hobart, Australia, 10–13 September 2019. [Google Scholar]
- Savenije, H.H.G.; Toffolon, M.; Haas, J.; Veling, E.J.M. Analytical description of tidal dynamics in convergent estuaries. J. Geophys. Res. Ocean. 2008, 113, C10025. [Google Scholar] [CrossRef]
- Garel, E.; Cai, H. Effects of Tidal-Forcing Variations on Tidal Properties Along a Narrow Convergent Estuary. Estuaries Coasts 2018, 41, 1924–1942. [Google Scholar] [CrossRef] [Green Version]
- Van Rijn, L.C. Analytical and numerical analysis of tides and salinities in estuaries; part I: Tidal wave propagation in convergent estuaries. Ocean. Dyn. 2011, 61, 1719–1741. [Google Scholar] [CrossRef]
- Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; Tychsen-Smith, L.; Petersson, L. A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling. Water 2023, 15, 566. [Google Scholar] [CrossRef]
- Lange, H.; Sippel, S. Machine learning applications in hydrology. For. Water Interact. 2020, 1, 233–257. [Google Scholar]
- Xu, T.; Liang, F. Machine learning for hydrologic sciences: An introductory overview. Wiley Interdiscip. Rev. Water 2021, 8, e1533. [Google Scholar] [CrossRef]
- Rahman, M.; Chen, N.; Islam, M.M.; Mahmud, G.I.; Pourghasemi, H.R.; Alam, M.; Rahim, M.A.; Baig, M.A.; Bhattacharjee, A.; Dewan, A. Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and machine learning algorithm. J. Clean. Prod. 2021, 311, 127594. [Google Scholar] [CrossRef]
- Hosseiny, H. A deep learning model for predicting river flood depth and extent. Environ. Model. Softw. 2021, 145, 105186. [Google Scholar] [CrossRef]
- Dazzi, S.; Vacondio, R.; Mignosa, P. Flood stage forecasting using machine-learning methods: A case study on the Parma River (Italy). Water 2021, 13, 1612. [Google Scholar] [CrossRef]
- Sampurno, J.; Vallaeys, V.; Ardianto, R.; Hanert, E. Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta. Nonlinear Process. Geophys. 2022, 29, 301–315. [Google Scholar] [CrossRef]
- Huang, S.; Xia, J.; Wang, Y.; Wang, W.; Zeng, S.; She, D.; Wang, G. Coupling Machine Learning Into Hydrodynamic Models to Improve River Modeling With Complex Boundary Conditions. Water Resour. Res. 2022, 58, e2022WR032183. [Google Scholar] [CrossRef]
- Pyo, J.; Cho, K.H.; Kim, K.; Baek, S.-S.; Nam, G.; Park, S. Cyanobacteria cell prediction using interpretable deep learning model with observed, numerical, and sensing data assemblage. Water Res. 2021, 203, 117483. [Google Scholar] [CrossRef]
- Jin, D.; Lee, E.; Kwon, K.; Kim, T. A deep learning model using satellite ocean color and hydrodynamic model to estimate chlorophyll-a concentration. Remote Sens. 2021, 13, 2003. [Google Scholar] [CrossRef]
- Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf Sci. 2020, 238, 106713. [Google Scholar] [CrossRef]
- Olivetti, S.; Gil, M.A.; Sridharan, V.K.; Hein, A.M. Merging computational fluid dynamics and machine learning to reveal animal migration strategies. Methods Ecol. Evol. 2021, 12, 1186–1200. [Google Scholar] [CrossRef]
- King, I. A Two-Dimensional Finite Element Model for Flow in Estuaries and Streams; RMA-2, Users Guide; University of California: Davis, CA, USA, 1997. [Google Scholar]
- King, I. A Two-Dimensional Finite Element Model for Flow in Estuaries and Streams; Resource Modelling Associates: Sydney, NSW, Australia, 2015. [Google Scholar]
- Khojasteh, D.; Chen, S.; Felder, S.; Glamore, W.; Hashemi, M.R.; Iglesias, G. Sea level rise changes estuarine tidal stream energy. Energy 2022, 239, 122428. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Z.B.; Townend, I.; He, Q. Quantification of tidal asymmetry and its nonstationary variations. J. Geophys. Res. Ocean. 2019, 124, 773–787. [Google Scholar] [CrossRef]
- Vibhani, T. Estuarine Tidal Response to Sea Level Rise: The Influence of Sea Level Rise on Key Estuarine Parameters. Honours Thesis, UNSW Sydney, Sydney, NSW, Australia, 2021. [Google Scholar]
- Bol, R. Effect of Deepening versus Sea Level Rise on Tidal Range in the Elbe Estuary. Bachelor’s Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2014. [Google Scholar]
- Feizabadi, S.; Rafati, Y.; Ghodsian, M.; Akbar Salehi Neyshabouri, A.; Abdolahpour, M.; Mazyak, A.R. Potential sea-level rise effects on the hydrodynamics and transport processes in Hudson–Raritan Estuary, NY–NJ. Ocean. Dyn. 2022, 72, 421–442. [Google Scholar] [CrossRef]
- Kumbier, K.; Rogers, K.; Hughes, M.G.; Lal, K.K.; Mogensen, L.A.; Woodroffe, C.D. An Eco-Morphodynamic Modelling Approach to Estuarine Hydrodynamics & Wetlands in Response to Sea-Level Rise. Front. Mar. Sci. 2022, 9, 613. [Google Scholar] [CrossRef]
- Moftakhari, H.R.; AghaKouchak, A.; Sanders, B.F.; Feldman, D.L.; Sweet, W.; Matthew, R.A.; Luke, A. Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future. Geophys. Res. Lett. 2015, 42, 9846–9852. [Google Scholar] [CrossRef] [Green Version]
- Craft, C.; Clough, J.; Ehman, J.; Joye, S.; Park, R.; Pennings, S.; Guo, H.; Machmuller, M. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 2009, 7, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Li, M.; Zhang, F. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. J. Geophys. Res. Ocean. 2017, 122, 3917–3938. [Google Scholar] [CrossRef]
- Ward, S.L.; Green, J.M.; Pelling, H.E. Tides, sea-level rise and tidal power extraction on the European shelf. Ocean. Dyn. 2012, 62, 1153–1167. [Google Scholar] [CrossRef]
- Kukulka, T.; Jay, D.A. Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Elahi, M.; Jalón-Rojas, I.; Wang, X.; Ritchie, E. Influence of seasonal river discharge on tidal propagation in the Ganges-Brahmaputra-Meghna Delta, Bangladesh. J. Geophys. Res. Ocean. 2020, 125, e2020JC016417. [Google Scholar] [CrossRef]
- Wang, Z.B.; Vandenbruwaene, W.; Taal, M.; Winterwerp, H. Amplification and deformation of tidal wave in the Upper Scheldt Estuary. Ocean. Dyn. 2019, 69, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhang, W.; Zhu, Y.; Ji, X.; Xu, Y.; Wu, Y.; Hoitink, A. Impact of trends in river discharge and ocean tides on water level dynamics in the Pearl River Delta. Coast. Eng. 2020, 157, 103634. [Google Scholar] [CrossRef]
- Lanzoni, S.; Seminara, G. On tide propagation in convergent estuaries. J. Geophys. Res. Ocean. 1998, 103, 30793–30812. [Google Scholar] [CrossRef]
- Ralston, D.K.; Talke, S.; Geyer, W.R.; Al-Zubaidi, H.A.; Sommerfield, C.K. Bigger tides, less flooding: Effects of dredging on barotropic dynamics in a highly modified estuary. J. Geophys. Res. Ocean. 2019, 124, 196–211. [Google Scholar] [CrossRef] [Green Version]
- Payandeh, A.R.; Justic, D.; Huang, H.; Mariotti, G.; Hagen, S.C. Tidal change in response to the relative sea level rise and marsh accretion in a tidally choked estuary. Cont. Shelf Res. 2022, 234, 104642. [Google Scholar] [CrossRef]
- Khadami, F.; Kawanisi, K.; Al Sawaf, M.B.; Gusti, G.N.N.; Xiao, C. Spatiotemporal response of currents and mixing to the interaction of tides and river runoff in a mesotidal estuary. Ocean. Sci. J. 2022, 57, 37–51. [Google Scholar] [CrossRef]
- Lyddon, C.; Brown, J.M.; Leonardi, N.; Plater, A.J. Flood hazard assessment for a hyper-tidal estuary as a function of tide-surge-morphology interaction. Estuaries Coasts 2018, 41, 1565–1586. [Google Scholar] [CrossRef] [Green Version]
- Prandle, D. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries. J. Phys. Oceanogr. 2003, 33, 2738–2750. [Google Scholar] [CrossRef]
- Cerralbo, P.; Grifoll, M.; Valle-Levinson, A.; Espino, M. Tidal transformation and resonance in a short, microtidal Mediterranean estuary (Alfacs Bay in Ebre delta). Estuar. Coast. Shelf Sci. 2014, 145, 57–68. [Google Scholar] [CrossRef]
- Leuven, J.R.; Pierik, H.J.; Vegt, M.v.d.; Bouma, T.J.; Kleinhans, M.G. Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide. Nat. Clim. Change 2019, 9, 986–992. [Google Scholar] [CrossRef]
- Shafiei, H.; Soloy, A.; Turki, I.; Simard, M.; Lecoq, N.; Laignel, B. Numerical investigation of the effects of distributary bathymetry and roughness on tidal hydrodynamics of Wax Lake region under calm conditions. Estuar. Coast. Shelf Sci. 2022, 265, 107694. [Google Scholar] [CrossRef]
- Friedrichs, C.T.; Madsen, O.S. Nonlinear diffusion of the tidal signal in frictionally dominated embayments. J. Geophys. Res. Ocean. 1992, 97, 5637–5650. [Google Scholar] [CrossRef]
- Friedrichs, C.T. Barotropic tides in channelized estuaries. Contemp. Issues Estuar. Phys. 2010, 27, 61. [Google Scholar]
- Palmer, K.; Watson, C.; Fischer, A. Non-linear interactions between sea-level rise, tides, and geomorphic change in the Tamar Estuary, Australia. Estuar. Coast. Shelf Sci. 2019, 225, 106247. [Google Scholar] [CrossRef]
- Jiang, L.; Gerkema, T.; Idier, D.; Slangen, A.; Soetaert, K. Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay. Ocean. Sci. 2020, 16, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, Y.M.; Schuttelaars, H.M.; Schramkowski, G.P.; Brouwer, R.L. Modeling the transition to high sediment concentrations as a response to channel deepening in the Ems River Estuary. J. Geophys. Res. Ocean. 2019, 124, 1578–1594. [Google Scholar] [CrossRef] [Green Version]
- Dronkers, J. Tidal asymmetry and estuarine morphology. Neth. J. Sea Res. 1986, 20, 117–131. [Google Scholar] [CrossRef]
- Miselis, J.L.; Lorenzo-Trueba, J. Natural and human-induced variability in barrier-island response to sea level rise. Geophys. Res. Lett. 2017, 44, 11922–11931. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.J.; Patsch, K.; List, J.H.; Williams, S.J. The potential for sea-level-rise-induced barrier island loss: Insights from the Chandeleur Islands, Louisiana, USA. Mar. Geol. 2014, 355, 244–259. [Google Scholar] [CrossRef]
- Young, S.; Couriel, E.; Jayewardene, I.; McPherson, B.; Dooley, B. Case study: Assessment of the entrance stability of the Lake Illawarra Estuary. Aust. J. Civ. Eng. 2014, 12, 41–52. [Google Scholar] [CrossRef]
- Ludt, W.B.; Rocha, L.A. Shifting seas: The impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J. Biogeogr. 2015, 42, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, H.; Jones, R.; Park, R.; Clough, J.; Herrod-Julius, S.; Harrington, B.; Page, G. Global climate change and sea level rise: Potential losses of intertidal habitat for shorebirds. Waterbirds 2002, 25, 173–183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khojasteh, D.; Vibhani, T.; Shafiei, H.; Glamore, W.; Felder, S. Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics. J. Mar. Sci. Eng. 2023, 11, 815. https://doi.org/10.3390/jmse11040815
Khojasteh D, Vibhani T, Shafiei H, Glamore W, Felder S. Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics. Journal of Marine Science and Engineering. 2023; 11(4):815. https://doi.org/10.3390/jmse11040815
Chicago/Turabian StyleKhojasteh, Danial, Tej Vibhani, Hassan Shafiei, William Glamore, and Stefan Felder. 2023. "Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics" Journal of Marine Science and Engineering 11, no. 4: 815. https://doi.org/10.3390/jmse11040815