User-Driven Design and Development of an Underwater Soft Gripper for Biological Sampling and Litter Collection
Abstract
1. Introduction
1.1. The Importance and Challenges of Underwater Robotic Intervention
1.2. State of the Art on Underwater Grippers: From Rigid to Soft Solutions
2. Materials and Methods
2.1. From User Requirements to the Conceptual Design
2.2. Mechanical Design and Fabrication
3. Results
3.1. Positioning Tests
3.2. Pull-Out Tests
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petillot, Y.R.; Antonelli, G.; Casalino, G.; Ferreira, F. Underwater Robots: From Remotely Operated Vehicles to Intervention-Autonomous Underwater Vehicles. IEEE Robot. Autom. Mag. 2019, 26, 94–101. [Google Scholar] [CrossRef]
- Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0056 (accessed on 28 March 2023).
- Huang, H.; Tang, Q.; Li, J.; Zhang, W.; Bao, X.; Zhu, H.; Wang, G. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic organism capture. Ocean. Eng. 2020, 195, 106644. [Google Scholar] [CrossRef]
- Carrera, A.; Palomeras, N.; Hurtós, N.; Carreras, M. Free-floating panel intervention by means of Learning by Demonstration. IFAC-PapersOnLine 2015, 48, 38–43. [Google Scholar] [CrossRef]
- Oussama, K.; Xiyang, Y.; Gerald, B.; Brian, S.; Boyeon, K.; Shameek, G.; Hannah, S.; Shiquan, W.; Mark, C.; Aaron, E.; et al. Ocean one: A robotic avatar for oceanic discovery. IEEE Robot. Autom. Mag. 2016, 23, 20–29. [Google Scholar] [CrossRef]
- Mazzeo, A.; Aguzzi, J.; Calisti, M.; Canese, S.; Vecchi, F.; Stefanni, S.; Controzzi, M. Marine Robotics for Deep-Sea Specimen Collection: A Systematic Review of Underwater Grippers. Sensors 2022, 22, 648. [Google Scholar] [CrossRef] [PubMed]
- Teoh, Z.E.; Phillips, B.T.; Becker, K.P.; Whittredge, G.; Weaver, J.C.; Hoberman, C.; Gruber, D.F.; Wood, R.J. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms. Sci. Robot. 2018, 3, eaat5276. [Google Scholar] [CrossRef] [PubMed]
- Sinatra, N.R.; Teeple, C.B.; Vogt, D.M.; Parker, K.K.; Gruber, D.F.; Wood, R.J. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 2019, 4, eaax5425. [Google Scholar] [CrossRef] [PubMed]
- Manti, M.; Hassan, T.; Passetti, G.; d’Elia, N.; Cianchetti, M.; Laschi, C. An Under-Actuated and Adaptable Soft Robotic Gripper. In Biomimetic and Biohybrid Systems: 4th International Conference, Living Machines 2015, Barcelona, Spain, 28–31 July 2015, Proceedings 4; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 64–74. [Google Scholar] [CrossRef]
- Mura, D.; Barbarossa, M.; Dinuzzi, G.; Grioli, G.; Caiti, A.; Catalano, M.G. A Soft Modular End Effector for Underwater Manipulation: A Gentle, Adaptable Grasp for the Ocean Depths. IEEE Robot. Autom. Mag. 2018, 25, 45–56. [Google Scholar] [CrossRef]
- Palli, G.; Moriello, L.; Scarcia, U.; Melchiorri, C. An Underwater Robotic Gripper with Embedded Force/Torque Wrist Sensor. IFAC-PapersOnLine 2017, 50, 11209–11214. [Google Scholar] [CrossRef]
- Stuart, H.; Wang, S.; Khatib, O.; Cutkosky, M.R. The Ocean One hands: An adaptive design for robust marine manipulation. Int. J. Rob. Res. 2017, 36, 150–166. [Google Scholar] [CrossRef]
- Galloway, K.C.; Becker, K.P.; Phillips, B.T.; Kirby, J.; Licht, S.; Tchernov, D.; Wood, R.J.; Gruber, D.F.; Shen, Z.; Zhong, H.; et al. Soft Robotic Grippers for Biological Sampling on Deep Reefs. Soft Robot 2016, 3, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Backus, S.; Onishi, R.; Bocklund, A.; Berg, A.; Contreras, E.; Parness, A. Design and testing of the JPL-Nautilus Gripper for deep-ocean geological sampling. J. Field Robot. 2020, 37, 972–986. [Google Scholar] [CrossRef]
- Kumamoto, H.; Shirakura, N.; Takamatsu, J.; Ogasawara, T. Underwater Suction Gripper for Object Manipulation with an Underwater Robot. In Proceedings of the 2021 IEEE International Conference on Mechatronics (ICM), Kashiwa, Japan, 7–9 March 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Mazzeo, A.; Aguzzi, J.; Calisti, M.; Canese, S.; Angiolillo, M.; Allcock, A.L.; Vecchi, F.; Stefanni, S.; Controzzi, M. Marine Robotics for Deep-Sea Specimen Collection: A Taxonomy of Underwater Manipulative Actions. Sensors 2022, 22, 1471. [Google Scholar] [CrossRef] [PubMed]
- Gruber, D.F.; Wood, R.J. Advances and future outlooks in soft robotics for minimally invasive marine biology. Sci. Robot. 2022, 7, eabm6807. [Google Scholar] [CrossRef] [PubMed]
- Picardi, G.; Chellapurath, M.; Iacoponi, S.; Stefanni, S.; Laschi, C.; Calisti, M. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci. Robot. 2020, 5, eaaz1012. [Google Scholar] [CrossRef] [PubMed]
- Belhe, U.; Kusiak, A. The house of quality in a design process. Int. J. Prod. Res. 1996, 34, 2119–2131. [Google Scholar] [CrossRef]
- Guler, K.; Petrisor, D.M. A Pugh Matrix based product development model for increased small design team efficiency. Cogent Eng. 2021, 8, 1923383. [Google Scholar] [CrossRef]
- Birk, A.; Antonelli, G.; Di Lillo, P.; Simetti, E.; Casalino, G.; Indiveri, G.; Ostuni, L.; Turetta, A.; Caffaz, A.; Weiss, P.; et al. Dexterous Underwater Manipulation from Onshore Locations: Streamlining Efficiencies for Remotely Operated Underwater Vehicles. IEEE Robot. Autom. Mag. 2018, 25, 24–33. [Google Scholar] [CrossRef]
- Ullman, D.G. The Mechanical Design Process; McGraw Hill: New York, NY, USA, 1992; Volume 2. [Google Scholar]
Who | Now | ||||||||
---|---|---|---|---|---|---|---|---|---|
Team SILVER2 | Marine Scientist | Mission Operator | 1 = Poor | ||||||
5 = Excellent | |||||||||
● Stuart et al. [12] | |||||||||
■ Galloway et al. [13] | |||||||||
▲ Manti et al. [9] | |||||||||
✦ Mura et al. [10] | |||||||||
✻ Birk et al. [21] | |||||||||
What | 1 | 2 | 3 | 4 | 5 | ||||
Pre-mission | R1. Simple manufacturing | 5 | 2 | 2 | ✻ | ■ ✦ | ● | ▲ | |
R2. Simple transportation | 7 | 3 | 6 | ✻ ■ | ● ▲ ✦ | ||||
R3. Simple assembly | 6 | 3 | 6 | ✻ | ■ ✦ | ● | ▲ | ||
R4. Handy | 8 | 4 | 6 | ■ | ● ✻ ✦ | ▲ | |||
Mission | R5. Easy to use | 3 | 3 | 8 | ✦ ✻ | ● ■ ▲ | |||
R6. Grasping different shapes | 4 | 6 | 3 | ✻ | ▲ | ■ ✦ | ● | ||
R7. Collecting sand/sediment samples | 5 | 6 | 3 | ● ■ ▲ ✦ ✻ | |||||
R8. Collecting biological samples | 4 | 8 | 3 | ✻ ▲ | ✦ ● | ■ | |||
R9. Firm grasp | 7 | 6 | 7 | ✻ | ▲ ✦ | ● ■ | |||
R10. Not damaging grasped objects | 6 | 7 | 4 | ✻ | ✦ | ● ■ ▲ | |||
R11. Collecting stuck or anchored samples | 4 | 8 | 5 | ▲ | ✦ ✻ | ■ | ● | ||
R12. Not damaging working environment | 4 | 8 | 4 | ✻ | ● ■ ▲ ✦ | ||||
R13. Dexterous grasp | 4 | 5 | 7 | ▲ | ✻ ■ | ● ✦ | |||
R14. Not getting stuck in the environment | 4 | 4 | 7 | ✻ | ● ✦ | ■ ▲ | |||
R15. Long battery | 4 | 4 | 7 | ■ | ● ✦ ✻ | ▲ | |||
R16. Not introducing pollutants | 4 | 7 | 3 | ■ ✻ | ● ▲ ✦ | ||||
Post-mission | R17. Simple disassembly | 5 | 2 | 6 | ■ ✦ ✻ | ● | ▲ | ||
R18. Simple ordinary maintenance | 6 | 6 | 6 | ✻ | ■ | ● ✦ | ▲ | ||
R19. Simple extra-ordinary maintenance | 7 | 4 | 5 | ✻ | ● | ■ ✦ | ▲ | ||
R20. Usable in different application scenarios | 3 | 4 | 2 | ■ ▲ | ● ✦ ✻ | ||||
100 | 100 | 100 | |||||||
total ●: | 80 | ||||||||
total ■: | 73 | ||||||||
total ▲: | 71 | ||||||||
total ✦: | 70 | ||||||||
total ✻: | 54 |
1. Replica of the Ocean One hand [13] with membranes | 2. Two-fingered gripper with hollow fingertips | 3. Gripper inspired to the carnivorous plant Dionaea muscipula | 4. Gripper with soft distal phalanges |
5. Grab with soft claws actuated by an endless screw | 6. Cable-driven gripper inspired by crab claws | 7. Hydraulic soft gripper [13] | 8. Radially symmetric three-fingered gripper with hollow palm and membranes |
What | Who | Reference | Concept Design Ideas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Team SILVER2 | Marine Scientist | Mission Operator | Ocean One Hand | (1) Ocean One Hand with Membranes | (2) Two-Fingered Gripper with Hollow Fingertips | (3) Carnivorous Plant Inspired Gripper | (4) Gripper with Soft Distal Phalanges | (5) Grab with Soft Claws and Endless Screw Actuation | (6) Crab Claw Inspirred Gripper with Cable-Driven Actuation | (7) Hydraulic Soft Gripper | (8) Radially Symmetric Gripper with Hollow Palm and Membranes | ||
Pre-mission | R1. Simple manufacturing | 5 | 2 | 2 | Datum | −1 | −1 | −1 | 0 | 0 | −1 | −1 | −1 |
R2. Simple transportation | 7 | 3 | 6 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | ||
R3. Simple assembly | 6 | 3 | 6 | −1 | 1 | 1 | −1 | −1 | 0 | 1 | −1 | ||
R4. Handy | 8 | 4 | 6 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | ||
Mission | R5. Easy to use | 3 | 3 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 | |
R6. Grasping different shapes | 4 | 6 | 3 | 1 | 0 | −1 | 0 | −1 | 0 | 0 | 0 | ||
R7. Collecting sand/sediment samples | 5 | 6 | 3 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | ||
R8. Collecting biological samples | 4 | 8 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
R9. Firm grasp | 7 | 6 | 7 | 1 | −1 | −1 | 0 | 0 | −1 | −1 | 1 | ||
R10. Not damaging grasped objects | 6 | 7 | 4 | 0 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | ||
R11. Collecting stuck or anchored samples | 4 | 8 | 5 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | ||
R12. Not damaging working environment | 4 | 8 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | ||
R13. Dexterous grasp | 4 | 5 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
R14. Not getting stuck in the environment | 4 | 4 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
R15. Long battery | 4 | 4 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
R16. Not introducing pollutants | 4 | 7 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Post-mission | R17. Simple disassembly | 5 | 2 | 6 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | |
R18. Simple ordinary maintenance | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
R19. Simple extra-ordinary maintenance | 7 | 4 | 5 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | ||
R20. Usable in different application scenarios | 3 | 4 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | ||
100 | 100 | 100 | Total | 3 | 2 | 1 | 0 | 1 | 1 | 2 | 3 | ||
Total weighted on Team SILVER2 | 10 | 11 | 9 | 2 | 6 | 4 | 11 | 14 | |||||
Total weighted on Marine scientist | 27 | 5 | 1 | 5 | 5 | 6 | 17 | 25 | |||||
Total weighted on Mission operator | 8 | 10 | 7 | −3 | 2 | 2 | 6 | 11 | |||||
Overall total weighted | 45 | 26 | 17 | 4 | 13 | 12 | 34 | 50 |
Parameters | Symbol | Value |
---|---|---|
Link lengths | ||
Cable-joint distance | ||
Fingertip position at closed configuration | ||
Joint angles at closed configuration | ||
Cable tension at closed configuration | ||
Theoretical angular spring stiffness | ||
Bow-tie joint spring distance | ||
Theoretical linear spring stiffness |
Activation Mode | Low Activation | Medium Activation | High Activation |
---|---|---|---|
Torque control | T = 4.4 N | T = 5.3 N | T = 6.2 N |
Position control | α = 44° | α = 88° | α = 132° |
Low Activation | Medium Activation | High Activation | |
---|---|---|---|
Position control | α = 132° | α = 176° | α = 212° |
Maximum pull-out force | F = 14.7 ± 1.95 N | F = 30.3 ± 4.8 N | F = 37 ± 3.7 N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picardi, G.; De Luca, M.; Chimienti, G.; Cianchetti, M.; Calisti, M. User-Driven Design and Development of an Underwater Soft Gripper for Biological Sampling and Litter Collection. J. Mar. Sci. Eng. 2023, 11, 771. https://doi.org/10.3390/jmse11040771
Picardi G, De Luca M, Chimienti G, Cianchetti M, Calisti M. User-Driven Design and Development of an Underwater Soft Gripper for Biological Sampling and Litter Collection. Journal of Marine Science and Engineering. 2023; 11(4):771. https://doi.org/10.3390/jmse11040771
Chicago/Turabian StylePicardi, Giacomo, Mauro De Luca, Giovanni Chimienti, Matteo Cianchetti, and Marcello Calisti. 2023. "User-Driven Design and Development of an Underwater Soft Gripper for Biological Sampling and Litter Collection" Journal of Marine Science and Engineering 11, no. 4: 771. https://doi.org/10.3390/jmse11040771
APA StylePicardi, G., De Luca, M., Chimienti, G., Cianchetti, M., & Calisti, M. (2023). User-Driven Design and Development of an Underwater Soft Gripper for Biological Sampling and Litter Collection. Journal of Marine Science and Engineering, 11(4), 771. https://doi.org/10.3390/jmse11040771