Experimental Study on Seawater Intrusion Law and Countermeasures within Island Underground Water-Sealed Oil Storage Caverns
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Theory and Ratio of Similarity
2.2. Experimental Setup
2.3. Cavern Excavation Experiment
2.4. Influential Experiments on Relevant Factors
2.5. Water Curtain Experiment
3. Results and Discussion
3.1. Dynamic Variation Characteristics of Seawater Intrusion
3.1.1. Natural Conditions
3.1.2. After Excavation of Oil Storage Caverns
3.2. Influence of Different Factors on Seawater Intrusion Interface
3.2.1. Influence of Distance between Excavated Caverns and the Coast
3.2.2. Influence of Fracture Width
3.2.3. Influence of Seawater Level
3.2.4. Influence of Oil Storage
3.3. Inhibition of Water Curtain on Seawater Intrusion
3.3.1. Influence of Different Water Curtains on Seawater Intrusion
3.3.2. Influence of Water Injection Pressure on Seawater Intrusion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makita, T.; Miyanaga, Y.; Iguchi, K.; Hatano, T. Underground oil storage facilities in Japan. Eng. Geol. 1993, 35, 191–198. [Google Scholar] [CrossRef]
- Sturk, R.; Stille, H. Design and excavation of rock caverns for fuel storage—A case study from Zimbabwe. Tunn. Undergr. Space Technol. 1995, 10, 193–201. [Google Scholar] [CrossRef]
- Hepbasli, A.; Karakus, A.A.; Erkek, M. Liquefied petroleum gas in Turkey’s energy sources. Energy Sources Part B Energy Sources 2003, 25, 373–382. [Google Scholar] [CrossRef]
- Kurose, H.; Ikeya, S.; Chang, C.-S.; Maejima, T.; Shimaya, S.; Tanaka, T.; Aoki, K. Construction of Namikata underground LPG storage cavern in Japan. Int. J. JCRM 2014, 10, 15–24. [Google Scholar] [CrossRef]
- Nilsen, B. Norwegian oil and gas storage in rock caverns—Technology based on experience from hydropower development. J. Rock Mech. Geotech. Eng. 2021, 13, 479–486. [Google Scholar] [CrossRef]
- Lee, Y.N.; Suh, Y.H.; Kim, D.Y.; Jue, K.S. Stress and deformation behaviour of oil storage caverns during excavation. Int. J. Rock Mech. Min. Sci. 1997, 34, 305.e1–305.e15. [Google Scholar] [CrossRef]
- Mohanty, S.; Vandergrift, T. Long term stability evaluation of an old underground gas storage cavern using unique numerical methods. Tunn. Undergr. Space Technol. 2012, 30, 145–154. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yan, E.C.; Ji, H.B.; Song, K. Regional stability of underground water sealed storage caverns around western pacific coastal area in China. J. Eng. Geol. 2013, 21, 626–633. [Google Scholar]
- Zhang, B.; Huo, D.P.; Peng, Z.H.; Li, J.Y.; Wang, J.C. Gis-based approach for construction suitability evaluation of underground water-sealed oil storage caverns in east coast of China. J. Eng. Geol. 2015, 23, 801–808. [Google Scholar]
- Qiao, L.P.; Li, S.C.; Wang, Z.C.; Tian, H.; Bi, L.P. Geotechnical monitoring on the stability of a pilot underground crude-oil storage facility during the construction phase in China. Measurement 2016, 82, 421–431. [Google Scholar] [CrossRef]
- Gao, X.; Yeh, T.-C.J.; Yan, E.-C. Fusion of Hydraulic Tomography and Displacement Back Analysis for Underground Cavern Stability Investigation. Water Resour. Res. 2018, 54, 8632–8652. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.X.; Wang, L.; Xu, N.X. Stability analysis of a group of underground anhydrite caverns used for crude oil storage considering rock tensile properties. Bull. Eng. Geol. Environ. 2019, 78, 6249–6265. [Google Scholar] [CrossRef]
- Peng, Z.H.; Zhang, B.; Li, Y.T.; Li, J.Y.; Shi, L. Study on Surrounding Rock Stability and Water-sealed Reliability of Underground Crude Oil Storage Cavern in Island. Chin. J. Undergr. Space Eng. 2020, 16, 1875–1881. [Google Scholar]
- Lim, J.-W.; Lee, E.; Moon, H.S.; Lee, K.-K. Integrated investigation of seawater intrusion around oil storage caverns in a coastal fractured aquifer using hydrogeochemical and isotopic data. J. Hydrol. 2013, 486, 202–210. [Google Scholar] [CrossRef]
- Shin, H.-S. Underground Space Development and Strategy in Korea. Tunn. Undergr. Space 2013, 23, 327–336. [Google Scholar] [CrossRef]
- Lee, E.; Lim, J.-W.; Moon, H.; Lee, K.-K. Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability. Environ. Earth Sci. 2015, 73, 1179–1190. [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, J.; Sterling, R. Advances in Underground Space Development. In Proceedings of the 13th World Confernece of ACUUS, Singapore, 7–9 November 2012. [Google Scholar]
- Zhang, B.; Li, Y.T.; Shi, L.; Peng, Z.H.; Li, J.Y. Numerical simulation of seawater intrusion in underground oilstorage cavern in island environment. J. Eng. Geol. 2018, 26, 1366–1374. [Google Scholar]
- Li, Y.T.; Zhang, B.; Shi, L.; Peng, Z.H.; Li, J.Y. Water-sealed reliability of vertical water curtain system in underground oil storage cavern in siland environment. J. Eng. Geol. 2019, 27, 267–276. [Google Scholar]
- Li, Y.T.; Zhang, B.; Shi, L.; Ye, Y.W. Dynamic Variation Characteristics of Seawater Intrusion in Underground Water-Sealed Oil Storage Cavern under Island Tidal Environment. Water 2019, 11, 130. [Google Scholar] [CrossRef]
- Studip, B.; Ghritartha, G.; Ghritartha, G.; Moses, K. Flow Characteristics through Granular Soil Influenced by Saline Water Intrusion: A Laboratory Investigation. Civ. Eng. J. 2022, 8, 863–878. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.H.; Kim, H.M.; Chang, H.W. Statistical approach to determine the sal-inized ground water flow path and hydrogeochemical features around the under-ground LPG cavern, Korea. Hydrol. Process. 2010, 21, 3615–3626. [Google Scholar] [CrossRef]
- Gupta, A.D.; Yapa, P.N.D.D. Saltwater Encroachment in an Aquifer: A Case Study. Water Resour. Res. 1982, 18, 546–556. [Google Scholar] [CrossRef]
- Schincariol, R.A.; Schwartz, F.W. An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media. Water Resour. Res. 1990, 26, 2317–2329. [Google Scholar] [CrossRef]
- Moore, Y.H.; Stoessell, R.K.; Easley, D.H. Fresh-water/sea-water relationship within a ground-water flow system, northeastern coast of the Yucatan Peninsula. Groundwater. 1992, 30, 343–350. [Google Scholar] [CrossRef]
- Zhang, Q.; Volker, R.E.; Lockington, D.A. Experimental investigation of contaminant transport in coastal groundwater. Adv. Environ. Res. 2002, 6, 229–237. [Google Scholar] [CrossRef]
- Lei, B.; Chen, J.P.; Ge, X.R.; Wang, S.L. Fractal geometry study on structure of jointed rock mass. Chin. J. Rock Mech. Eng. 2005, 24, 461–467. [Google Scholar]
- Jacob, B.; Gedeon, D. Some exact solutions of interface problems by means of the hydrograph method. J. Geophys. Res. 1964, 69, 1563–1572. [Google Scholar] [CrossRef]
- Glover, R.E. The pattern of fresh-water flow in a coastal aquifer. J. Geophys. Res. 1959, 64, 457–459. [Google Scholar] [CrossRef]
- Shamir, U.; Daganver, G. Motion of the seawater interface in coastal aquifers: A numerical solution. Water Resour. Res. 1971, 7, 644–657. [Google Scholar] [CrossRef]
- Sakr, S.A. Validity of a sharp-interface model in a confined coastal aquifer. Hydrogeol. J. 1999, 7, 155–160. [Google Scholar] [CrossRef]
- Huyakorn, P.S.; Andersen, P.F.; Mercer, J.W.; White, H.O., Jr. Saltwater intrusion in aquifers: Development and testing of a three-dimensional finite element model. Water Resour. Res. 1987, 23, 293–312. [Google Scholar] [CrossRef]
- Henry, H.R. Effects of dispersion on salt encroachment in coastal aquifers. U.S. Geol. Surv. Water Supply Pap 1964, 1613-C, C71–C84. [Google Scholar]
- Voss, C.L.; Souza, W.R. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 1987, 23, 1851–1866. [Google Scholar] [CrossRef]
- Pinder, G.F.; Cooper, H.H. A numerical technique for calculating the transient position of the saltwater front. Water Resour. Res. 1970, 6, 875–882. [Google Scholar] [CrossRef]
- Simpson, M.J.; Clement, T.P. Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour. Res. 2004, 40, W01504. [Google Scholar] [CrossRef]
- Buès, M.A.; Oltean, C. Numerical simulations for saltwater intrusion by the mixed hybrid finite element method and discontinuous finite element method. Transp. Porous Media. 2000, 40, 171–200. [Google Scholar] [CrossRef]
- Stoeckl, L.; Houben, G. How to conduct variable-density sand tank experiments: Practical hints and tips. Hydrogeol. J. 2022, 31, 1353–1370. [Google Scholar] [CrossRef]
- Goswami, R.R.; Clement, T.P. Laboratory-scale investigation of saltwater intrusion dynamics. Water Resour. Res. 2007, 43, W04418. [Google Scholar] [CrossRef]
- Konz, M.; Younes, A.; Ackerer, P.; Fahs, M.; Huggenberger, P.; Zechner, E. Variable-density flow in heterogeneous porous media—Laboratory experiments and numerical simulations. J. Contam. Hydrol. 2009, 108, 168–175. [Google Scholar] [CrossRef]
- Chang, S.W.; Clement, T.P. Laboratory and numerical investigation of transport processes occurring above and within a saltwater wedge. J. Contam. Hydrol. 2013, 147, 14–24. [Google Scholar] [CrossRef]
- Rumer, R.R.; Harleman, D.R.F. Intruded salt-water wedge in porous media. J. Hydraul. Eng. 1963, 89, 193–220. [Google Scholar] [CrossRef]
- Kuan, W.K.; Jin, G.Q.; Xin, P.; Robinson, C.; Gibbes, B.; Li, L. Tidal influence onseawater intrusion in unconfined coastal aquifers. J. Hydraul. Eng. 2012, 89, 193–220. [Google Scholar] [CrossRef]
- Mehdizadeh, S.S.; Werner, A.D.; Vafaie, F.; Badaruddin, S. Vertical leakage in sharp-interface seawater intrusion models of layered coastal aquifers. J. Hydrol. 2014, 519, 1097–1107. [Google Scholar] [CrossRef]
- Siarkos, I.; Latinopoulos, D.; Mallios, Z.; Latinopoulos, P. A methodological framework to assess the environmental and economic effects of injection barriers against seawater intrusion. J. Environ. Manag. 2017, 193, 532–540. [Google Scholar] [CrossRef]
- Huang, P.S.; Chiu, Y.C. A simulation-optimization model for seawater intrusion management at pingtung coastal area, Taiwan. Water 2018, 10, 251. [Google Scholar] [CrossRef]
- Raji, V.R.; Packialakshmi, C. Assessing the wastewater pollutants retaining for a soil aquifer treatment using batch column experiments. Civ. Eng. J. 2022, 8, 280–287. [Google Scholar] [CrossRef]
- Schöpke, R.; Walko, M. Control of the remediation of anoxic AMD groundwater by sulphate reduction in a subsoil reactor. J. Hum. Earth Future 2022, 3, 1482–1491. [Google Scholar] [CrossRef]
- Cooper, H.H. Sea Water in Coastal Aquifers; U.S. Government Printing Office: Washington, DC, USA, 1964; pp. C12–C32. [Google Scholar]
- Werner, A.D.; Simmons, C.T. Impact of Sea-Level Rise on Sea Water Intrusion in Coastal Aquifers. Ground Water 2009, 47, 197–204. [Google Scholar] [CrossRef]
Control Parameters | Symbol | Standard Unit | Dimension |
---|---|---|---|
Structural dimension | D | [m] | L |
Space coordinate | X | [m] | L |
Space coordinate | Y | [m] | L |
Hydraulic path | ΔL | [m] | L |
Water level | h | [m] | L |
Time | t | [s] | T |
Density | ρ | [kg/m3] | ML−3 |
Pressure | ΔP | [kg/m·s2] | ML−1T−2 |
Velocity | V | [m/s] | LT−1 |
Kinematic viscosity coefficient | νw | [m2/s] | L2T−1 |
Permeability coefficient | K | [m/s] | LT−1 |
Similarity Criterion | π1 | π2 | π3 | π4 | π5 | π6 | π7 | π8 |
---|---|---|---|---|---|---|---|---|
Expressions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Zhang, B.; Li, Y.; Li, J. Experimental Study on Seawater Intrusion Law and Countermeasures within Island Underground Water-Sealed Oil Storage Caverns. J. Mar. Sci. Eng. 2023, 11, 2139. https://doi.org/10.3390/jmse11112139
Zhou Q, Zhang B, Li Y, Li J. Experimental Study on Seawater Intrusion Law and Countermeasures within Island Underground Water-Sealed Oil Storage Caverns. Journal of Marine Science and Engineering. 2023; 11(11):2139. https://doi.org/10.3390/jmse11112139
Chicago/Turabian StyleZhou, Qi, Bin Zhang, Yutao Li, and Junyan Li. 2023. "Experimental Study on Seawater Intrusion Law and Countermeasures within Island Underground Water-Sealed Oil Storage Caverns" Journal of Marine Science and Engineering 11, no. 11: 2139. https://doi.org/10.3390/jmse11112139
APA StyleZhou, Q., Zhang, B., Li, Y., & Li, J. (2023). Experimental Study on Seawater Intrusion Law and Countermeasures within Island Underground Water-Sealed Oil Storage Caverns. Journal of Marine Science and Engineering, 11(11), 2139. https://doi.org/10.3390/jmse11112139