Extreme Wind Wave Climate off Jeddah Coast, the Red Sea
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Model Description: Computational Grid and Bathymetry
3.2. Input Data Generation Boundary Condition
3.3. Model Validation
Point Selection for the Extreme Value Analysis
4. Extreme Value Analysis
4.1. GEV Method
4.2. GPD Method
4.3. Threshold Selection for GPD
5. Results and Discussions
5.1. General Wave Characteristics from Model Outputs
5.2. Annual Climatology
5.3. Seasonal Climatology
5.4. Trend Analysis
5.4.1. Seasonal Trend
5.4.2. Extreme Wave Analysis
5.5. Return Period
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanem, E.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F. Statistical Description and Modelling of Extreme Ocean Wave Conditions. Proc. Inst. Civ. Eng.-Marit. Eng. 2019, 172, 124–132. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, F. Integrated management and planning of coastal zones in CPLP—Part 1 [Gestão e planeamento integrado das zonas costeiras da CPLP—Parte 1]. J. Integr. Coast. Zone Manag. 2020, 20, 85–87. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, F. Integrated management and planning of coastal zones in CPLP—Part 2 [Gestão e planeamento integrado das zonas costeiras da CPLP—Parte 2]. J. Integr. Coast. Zone Manag. 2020, 20, 157–160. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, T. Coastal Dynamics and Protection. Rev. Gestão Costeira Integr. 2021, 21, 69–72. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958; p. 375. [Google Scholar]
- Ferreira, J.A.; Guedes Soares, C. An Application of the Peaks Over Threshold Method to Predict Extremes of Significant Wave Height. J. Offshore Mech. Arct. Eng. 1998, 120, 165. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Theory of the Strength of Materials; Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1939. [Google Scholar]
- Fisher, R.A.; Tippett, L.H.C. Limiting Forms of the Frequency Distribution of the Largest or Smallest Members of a Sample. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Gnedenko, B.V. Sur la distribution limite du terme maximum of d’unesérie Aléatorie. Ann. Math. 1943, 44, 423–453. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A. 100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data. J. Clim. 2005, 18, 1032–1048. [Google Scholar] [CrossRef]
- Erikson, L.H.; Hegermiller, C.A.; Barnard, P.L.; Ruggiero, P.; van Ormondt, M. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean. Model 2015, 96, 171–185. [Google Scholar] [CrossRef]
- Polnikov, V.; Gomorev, I. On estimating the return values for wind speed and wind-wave heights. Russ. Meteorol. Hydrol. 2014, 15, 40. [Google Scholar] [CrossRef]
- Vanem, E. A regional extreme value analysis of ocean waves in a changing climate. Ocean. Eng. 2017, 144, 277–295. [Google Scholar] [CrossRef]
- Naseef, M.; Sanil Kumar, V. Climatology and trends of the Indian Ocean surface waves based on 39-year long ERA5 reanalysis data. Int. J. Climatol. 2019, 40, 979–1006. [Google Scholar] [CrossRef]
- Komar, P.D.; Allan, J.C. Higher Waves Along U.S. East Coast Linked to Hurricanes. Eos Trans. Am. Geophys. Union 2007, 88, 301. [Google Scholar] [CrossRef]
- Chen, Z.; Bromirski, P.D.; Gerstoft, P.; Stephen, R.A.; Lee, W.S.; Yun, S.; Olinger, S.D.; Aster, R.C.; Wiens, D.A.; Nyblade, A.A. Ross Ice Shelf Ice quakes Associated With Ocean Gravity Wave Activity. Geophys. Res. Lett. 2019, 46, 8893–8902. [Google Scholar] [CrossRef] [Green Version]
- Teena, N.V.; Sanil Kumar, V.; Sudheesh, K.; Sajeev, R. Statistical analysis on extreme wave height. Nat. Hazards 2012, 64, 223–236. [Google Scholar] [CrossRef]
- Sanil Kumar, V.; Muhammed Naseef, T. Performance of ERA-Interim Wave Data in the Nearshore Waters around India. J. Atmos. Ocean. Technol. 2015, 32, 1257–1269. [Google Scholar] [CrossRef]
- Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Vanem, E.; Reis, M.T.; Neves, L. das Asymmetric Copula–Based Distribution Models for Met-Ocean Data in Offshore Wind Engineering Applications. Wind. Eng. 2018, 42, 304–334. [Google Scholar] [CrossRef] [Green Version]
- Shanas, P.R.; Aboobacker, V.M.; Alaa, M.A.A.; Khalid, M.Z. Superimposed wind waves in the Red Sea. Ocean. Eng. 2017, 138, 9–22. [Google Scholar] [CrossRef]
- Shanas, P.R.; Aboobacker, V.M.; Albarakati, A.M.A.; Zubier, K.M. Climate-driven variability of wind-waves in the Red Sea. Ocean. Model. 2017, 119, 105–117. [Google Scholar] [CrossRef]
- Vanem, E.; Fazeres-Ferradosa, T. A Truncated, Translated Weibull Distribution for Shallow Water Sea States. Coast. Eng. 2022, 172, 104077. [Google Scholar] [CrossRef]
- Langodan, S.; Cavaleri, L.; Viswanadhapalli, Y.; Hoteit, I. The Red Sea: A Natural Laboratory for Wind and Wave Modeling. J. Phys. Oceanogr. 2014, 44, 3139–3159. [Google Scholar] [CrossRef] [Green Version]
- Langodan, S.; Cavaleri, L.; Viswanadhapalli, Y.; Hoteit, I. Wind-wave source functions in opposing seas. J. Geophys. Res. Ocean. 2015, 120, 6751–6768. [Google Scholar] [CrossRef] [Green Version]
- Ralston, D.K.; Jiang, H.; Farrar, J.T. Waves in the Red Sea: Response to monsoonal and mountain gap winds. Cont. Shelf Res. 2013, 65, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Saad, A. Wave and Wind Conditions in the Red Sea—A Numerical Study Using a Third-Generation Wave Model. Master’s Thesis, Geophysical Institute University of Bergen, Bergen, Norway, 2010; p. 88. [Google Scholar]
- Fery, N.; Al-Subhi, A.M.; Zubier, K.M.; Bruss, G. Evaluation of the sea state near Jeddah based on recent observations and model results. J. Oper. Oceanogr. 2015, 8, 1–10. [Google Scholar] [CrossRef]
- Fery, N.; Bruss, G.; Al-subhi, A.; Mayerle, R. Numerical study of wind-generated waves in the Red Sea. In 4th International Conference on the Application of Physical Modeling to Port and Coastal Protection; Academia Press: Ghent, Belgium, 2012; pp. 446–455. [Google Scholar]
- Shanas, P.R.; Aboobacker, V.M.; Zubier, K.M.; Albarakati, A.M.A. Spectral wave characteristics along the central coast of eastern Red Sea. Arab. J. Geosci. 2018, 11, 90. [Google Scholar] [CrossRef]
- Albarakati, A.M.A.; Aboobacker, V.M. Wave transformation in the nearshore waters of Jeddah, west coast of Saudi Arabia. Ocean. Eng. 2018, 163, 599–608. [Google Scholar] [CrossRef]
- Langodan, S.; Antony, C.; PR, S.; Dasari, H.P.; Abualnaja, Y.; Knio, O.; Hoteit, I. Wave modelling of a reef-sheltered coastal zone in the Red Sea. Ocean. Eng. 2020, 207, 107378. [Google Scholar] [CrossRef]
- Shamji, V.R.; Aboobacker, V.M.; Vineesh, T.C. Extreme value analysis of wave climate around Farasan Islands, southern Red Sea. Ocean. Eng. 2020, 207, 107395. [Google Scholar] [CrossRef]
- Abdelrahman, S. Hindcasting Wave Climatology Off Jeddah Coast. J. King Abdulaziz Univ.-Mar. Sci. 1993, 4, 3–16. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.F.; Magne, R.; Roland, A.; Van Der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.; Aouf, L.; et al. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration and validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Bidlot, J.-R.; Janssen, P.; Abdalla, S. A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Memo. 2007, 509, 27. [Google Scholar]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.F.; Olson, C.; Beale, J.R.; Wessel, P. Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Farrar, J.T.; Lentz, S.; Churchill, J.; Bouchard, P.; Smith, J.; Kemp, J.; Lord, J.; Allsup, G.; Hosom, D. King Abdullah University of Science and Technology (KAUST) Mooring Deployment Cruise and Fieldwork Report (Technical Report No. WHOI-KAUST-CTR-2009-02); Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 2009. [Google Scholar]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001; ISBN 9781849968744. [Google Scholar]
- Méndez, F.J.; Menéndez, M.; Luceño, A.; Losada, I.J. Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Mathiesen, M.; Goda, Y.; Hawkes, P.; Mansard, E.; Martín, M.; Peltier, E.; Thompson, E.; Vledder, G. Recommended practice for extreme wave analysis. J. Hydraul. Res. 1994, 32, 803–814. [Google Scholar] [CrossRef]
- Lionello, P.; Günther, H.; Janssen, P. Assimilation of altimeter data in a global third-generation wave model. J. Geophys. Res. 1992, 971, 14453–14474. [Google Scholar] [CrossRef]
- Brodtkorb, P.; Johannesson, P.; Lindgren, G.; Rychlik, I.; Ryden, J.; Sjo, E. WAFO—A Matlab toolbox for analysis of random waves and loads. Proc. Int. Offshore Polar Eng. Conf. 2000, 3, 343–350. [Google Scholar]
- Jiang, H.; Farrar, J.T.; Beardsley, R.C.; Chen, R.; Chen, C. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys. Res. Lett. 2009, 36, 19. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the Regression Coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Biometrika 1957, 44, 298. [Google Scholar] [CrossRef]
- Hess, A.; Iyer, H.; Malm, W. Linear trend analysis: A comparison of methods. Atmos. Environ. 2001, 35, 5211–5222. [Google Scholar] [CrossRef]
Data Points | Coordinates | Available Period | Data Interval | |
---|---|---|---|---|
WW3-1 | 21.530000° | 39.002000° | 1979–2018 | 3 h |
WW3-2 | 21.434000° | 39.001000° | 1979–2018 | 3 h |
WW3-3 | 21.351000° | 38.995000° | 1979–2018 | 3 h |
WW3-4 | 21.499000° | 39.101000° | 1979–2018 | 3 h |
WW3-5 | 21.425000° | 39.089000° | 1979–2018 | 3 h |
WW3-6 | 21.349000° | 39.086000° | 1979–2018 | 3 h |
WW3-7 | 21.465000° | 39.136000° | 1979–2018 | 3 h |
WW3-8 | 21.396000° | 39.135072° | 1979–2018 | 3 h |
Locations | Prewinter (m/Year) | Pre Summer (m/Year) | Summer (m/Year) | Winter (m/Year) | Prewinter (m/Year) | Pre Summer (m/Year) | Summer (m/Year) | Winter (m/Year) |
---|---|---|---|---|---|---|---|---|
(99th Percentile) | (99th Percentile) | (99th Percentile) | (99th Percentile) | (90th Percentile) | (90th Percentile) | (90th Percentile) | (90th Percentile) | |
1 | −0.0028 | 0.0026 | 0.0010 | 0.0006 | −0.0002 | 0.0007 | 0.0006 | 0.0016 |
2 | −0.0017 | 0.0018 | 0.0006 | 0.0000 | 0.0001 | 0.0009 | 0.0006 | 0.0014 |
3 | −0.0031 | 0.0028 | 0.0014 | 0.0008 | −0.0003 | 0.0005 | 0.0004 | 0.0015 |
4 | −0.0018 | 0.0011 | 0.0003 | 0.0007 | 0.0006 | 0.0008 | 0.0007 | 0.0011 |
5 | −0.0017 | 0.0008 | 0.0002 | 0.0009 | 0.0006 | 0.0008 | 0.0005 | 0.0009 |
6 | −0.0021 | 0.0012 | 0.0004 | 0.0010 | 0.0001 | 0.0006 | 0.0003 | 0.0013 |
7 | −0.0002 | 0.0005 | −0.0002 | 0.0003 | 0.0001 | 0.0005 | −0.0001 | 0.0003 |
8 | −0.0003 | 0.0002 | −0.0002 | 0.0002 | 0.0003 | 0.0005 | −0.0001 | 0.0003 |
GEV | ||||
---|---|---|---|---|
Location | Parameters (PWM Method) | RMSE | ||
δ | σ | µ | ||
St 1 | 0.213 | 0.335 | 1.686 | 0.023 |
St 2 | 0.235 | 0.318 | 1.615 | 0.032 |
St 3 | 0.214 | 0.346 | 1.733 | 0.023 |
St 4 | 0.265 | 0.298 | 1.459 | 0.019 |
St 5 | 0.260 | 0.276 | 1.413 | 0.018 |
St 6 | 0.222 | 0.296 | 1.461 | 0.020 |
St 7 | 0.329 | 0.098 | 0.615 | 0.007 |
St 8 | 0.327 | 0.081 | 0.519 | 0.006 |
Location | Annual Maximum | Monthly Maximum | |||||||
---|---|---|---|---|---|---|---|---|---|
GEV Method | GEV Method | ||||||||
Return Period of Hs | Maximum of the Data | Return Period of Hs | |||||||
10 Year | 20 Year | 50 Year | 100 Year | 10 Year | 20 Year | 50 Year | 100 Year | ||
St 1 | 2.71 | 2.83 | 2.98 | 3.09 | 3.23 | 2.75 | 2.84 | 2.94 | 3.01 |
St 2 | 2.59 | 2.72 | 2.89 | 3.02 | 3.27 | 2.50 | 2.56 | 2.62 | 2.66 |
St 3 | 2.79 | 2.92 | 3.07 | 3.18 | 3.32 | 2.83 | 2.92 | 3.03 | 3.10 |
St 4 | 2.28 | 2.35 | 2.42 | 2.47 | 2.55 | 2.30 | 2.36 | 2.42 | 2.46 |
St 5 | 2.19 | 2.24 | 2.31 | 2.35 | 2.40 | 2.19 | 2.24 | 2.30 | 2.33 |
St 6 | 2.35 | 2.43 | 2.52 | 2.59 | 2.67 | 2.36 | 2.43 | 2.50 | 2.55 |
St 7 | 0.85 | 0.87 | 0.88 | 0.89 | 0.92 | 0.87 | 0.88 | 0.90 | 0.91 |
St 8 | 0.73 | 0.75 | 0.77 | 0.78 | 0.79 | 0.73 | 0.75 | 0.76 | 0.77 |
Location | GPD | ||||
---|---|---|---|---|---|
Return Period of Hs | Maximum of the Data | ||||
10 Year | 20 Year | 50 Year | 100 Year | ||
St 1 | 2.99 | 3.11 | 3.19 | 3.27 | 3.23 |
St 2 | 2.93 | 3.12 | 3.28 | 3.44 | 3.27 |
St 3 | 3.09 | 3.21 | 3.29 | 3.38 | 3.32 |
St 4 | 2.44 | 2.51 | 2.56 | 2.60 | 2.55 |
St 5 | 2.32 | 2.38 | 2.42 | 2.45 | 2.40 |
St 6 | 2.52 | 2.61 | 2.67 | 2.72 | 2.67 |
St 7 | 0.90 | 0.92 | 0.93 | 0.95 | 0.92 |
St 8 | 0.76 | 0.78 | 0.79 | 0.80 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaaq, F.; V.R., S. Extreme Wind Wave Climate off Jeddah Coast, the Red Sea. J. Mar. Sci. Eng. 2022, 10, 748. https://doi.org/10.3390/jmse10060748
Alsaaq F, V.R. S. Extreme Wind Wave Climate off Jeddah Coast, the Red Sea. Journal of Marine Science and Engineering. 2022; 10(6):748. https://doi.org/10.3390/jmse10060748
Chicago/Turabian StyleAlsaaq, Faisal, and Shamji V.R. 2022. "Extreme Wind Wave Climate off Jeddah Coast, the Red Sea" Journal of Marine Science and Engineering 10, no. 6: 748. https://doi.org/10.3390/jmse10060748
APA StyleAlsaaq, F., & V.R., S. (2022). Extreme Wind Wave Climate off Jeddah Coast, the Red Sea. Journal of Marine Science and Engineering, 10(6), 748. https://doi.org/10.3390/jmse10060748