Improved Ship Object Detection in Low-Illumination Environments Using RetinaMFANet
Abstract
:1. Introduction
1.1. Object Detection Methods
1.2. Object Detection Methods in Low-Illumination Environments
2. The Framework of RetinaMFANet
2.1. Feature Extraction Network
2.2. New Multiscale Feature Fusion Network
2.3. Attention Feature Detection Network
2.4. Loss Function
3. Experimental Verification and Result Analysis
3.1. Evaluation Index of Detection Performance
3.2. Dataset Construction
3.3. Image Multi-Random Augmentation
3.4. The Design of Prior Bounding Box
3.5. Analysis of Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fefilatyev, S.; Goldgof, D.; Shreve, M.; Lembke, C. Detection and tracking of ships in open sea with rapidly moving buoy-mounted camera system. Ocean Eng. 2012, 54, 1–12. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yang, J.X.; Kang, Z. Moving ship detection algorithm based on gaussian mixture model. In Proceedings of the 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018), Shanghai, China, 22–23 July 2018; Atlantis Press: Paris, France, 2018; pp. 197–201. [Google Scholar] [CrossRef] [Green Version]
- Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993–2016. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Yin, Y.; Li, Z.; Chen, J.; Bao, K. Research on Active Intelligent Perception Technology of Vessel Situation Based on Multisensor Fusion. Math. Probl. Eng. 2020, 2020, 9146727. [Google Scholar] [CrossRef]
- Ye, C.; Lu, T.; Xiao, Y. Maritime surveillance videos based ships detection algorithms: A survey. J. Image Graph. 2022, 27, 2078–2093. [Google Scholar]
- Ma, R.; Yin, Y.; Bao, K. Ship Detection Based on LiDAR and Visual Information Fusion. In Proceedings of the 2022 Conference on Lasers and Electro-Optics (CLEO) IEEE, San Jose, CA, USA, 15–20 May 2022. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R.B. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.Q.; He, K.M.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.B.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1063–1069. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zou, J.J.; Yuan, W.; Yu, M.H. Maritime objective detection of intelligent ship based on faster R-CNN. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 4113–4117. [Google Scholar] [CrossRef]
- Schöller, F.E.T.; Plenge-Feidenhans, L.M.K.; Stets, J.D.; Blanke, M. Assessing deep-learning methods for object detection at sea from LWIR images. IFAC-PapersOnLine 2019, 52, 64–71. [Google Scholar] [CrossRef]
- Yue, B.; Chen, L.; Shi, H. Ship Detection in SAR Images Based on Improved RetinaNet. J. Signal Process. 2022, 38, 128–136. [Google Scholar]
- Lv, D.; Zhang, X. Low Illumination Objective Detection Algorithm Based on Improved SSD. Autom. Instrum. 2022, 37, 53–58, 69. [Google Scholar]
- Li, Y.-B.; Wang, Y.-L.; Yan, Y. Infrared and visible images fusion from different views based on saliency detection. Laser Infrared 2021, 51, 465–470. [Google Scholar]
- Chen, S.; Wang, C.; Zhou, Y. A Pedestrian Detection Method Based on YOLOv5s and Image Fusion. Electron. Opt. Control. 2022, 29, 96–101, 131. [Google Scholar]
- Chang, L.; Bai, J.; Huang, L. Multi-Objective Detection Based on Camera and Radar Feature Fusion Networks. Trans. Beijing Inst. Technol. 2022, 42, 318–323. [Google Scholar]
- Liu, J.; Zhao, T.; Liu, M. Ship Objective Detection in SAR Image Based on RetinaNet. J. Hunan Univ. (Nat. Sci.) 2020, 47, 85–91. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; 770–778. [Google Scholar]
- Lin, T.Y.; Dollar, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convo1utional b1ock attention module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Bloisi, D.D.; Iocchi, L.; Pennisi, A.; Tombolini, L. ARGOS-Venice boat classification. In Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Karlsruhe, Germany, 25–28 August 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Prasad, D.K.; Rajan, D.; Prasath, C.K.; Rachmawati, L.; Rajabally, E.; Quek, C. MSCM-LiFe: Multi-scale cross modal linear feature for horizon detection in maritime images. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, Singapore, 22–25 November 2016; pp. 1366–1370. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.F.; Wu, W.J.; Wang, Z.Y.; Du, W.; Li, C.Y. SeaShips: A large-scale precisely annotated dataset for ship detection. IEEE Trans. Multimed. 2018, 20, 2593–2604. [Google Scholar] [CrossRef]
- Fefilatyev, S.; Smarodzinava, V.; Hall, L.O.; Goldgof, D.B. Horizon detection using machine learning techniques. In Proceedings of the 5th International Conference on Machine Learning and Applications (ICMLA’06), Orlando, FL, USA, 14–16 December 2006; pp. 17–21. [Google Scholar] [CrossRef]
- Bovcon, B.; Mandeljc, R.; Perš, J.; Kristan, M. Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation. Robot. Auton. Syst. 2018, 104, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.; Cruz, G.; Matos, J.; Bernardino, A. A data set for airborne maritime surveillance environments. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 2720–2732. [Google Scholar] [CrossRef]
- Nie, X.; Liu, W.; Wu, W. Ship detection based on enhanced YOLOv3 under complex environments. J. Comput. Appl. 2020, 40, 2561–2570. [Google Scholar]
- Liu, G.; Zheng, Y.; Zhao, M. Vehicle information detection based on improved RetinaNet. J. Comput. Appl. 2020, 40, 854–858. [Google Scholar]
Layer Name | Output Size | 50-Layer |
---|---|---|
Conv1 | , stride 2 | |
Conv2_x | max pool, stride 2 | |
Conv3_x | ||
Conv4_x | ||
Conv5_x | ||
Average pool, 1000-d fc softmax |
Dataset | Data Type | Sensor | Label Categories | Data Amount |
---|---|---|---|---|
MarDCT | video/land-based | VIS/IR | DCT | 12 |
SMD | video/mixed | VIS/NI | DT/7 + horizon | 36/12,604 |
SeaShips | image/land-based | VIS | D/6 | 168/31,455 |
Buoy | video/buoy | VIS | horizon | 10/998 |
MODD2 | video/USV | VIS | D/2 * | 28/11,675 |
SEAGULL | video/UAV | VIS/IR/NI | DT/5 | 19/151,753 |
Method | Backbone | AP/% | FPS |
---|---|---|---|
Faster R-CNN | ResNet50 | 77.8 | 19.23 |
RetinaNet | ResNet50 | 75.2 | 25.53 |
SSD-improved | ResNet50 | 76.9 | 21.88 |
YOLOv3-enhanced | Darknet53 | 78.0 | 26.13 |
RetinaMFANet | ResNet50 | 78.9 | 23.46 |
Multiscale Feature Fusion Network | Attention Feature Detection Network | Image Multi-Random Augmentation | Priori Anchor Design | AP/% |
---|---|---|---|---|
× | × | × | × | 75.2 |
√ | × | × | × | 77.5 |
√ | √ | × | × | 77.7 |
√ | √ | √ | × | 78.4 |
√ | √ | √ | √ | 78.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Bao, K.; Yin, Y. Improved Ship Object Detection in Low-Illumination Environments Using RetinaMFANet. J. Mar. Sci. Eng. 2022, 10, 1996. https://doi.org/10.3390/jmse10121996
Ma R, Bao K, Yin Y. Improved Ship Object Detection in Low-Illumination Environments Using RetinaMFANet. Journal of Marine Science and Engineering. 2022; 10(12):1996. https://doi.org/10.3390/jmse10121996
Chicago/Turabian StyleMa, Ruixin, Kexin Bao, and Yong Yin. 2022. "Improved Ship Object Detection in Low-Illumination Environments Using RetinaMFANet" Journal of Marine Science and Engineering 10, no. 12: 1996. https://doi.org/10.3390/jmse10121996