Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar
2.2. Soil
2.3. Glasshouse Experiment
2.4. Nitrous Oxide Emissions Measurement
2.5. Leachate Collection
2.6. End-of-Trial Sampling
2.7. Other Measurements
2.8. Statistical Analysis
3. Results
3.1. Dry Matter (DM) Yield, N Concentrations in Plant and N Plant Uptake
3.2. N2O Emissions Fluxes
3.3. Cumulative N2O Emissions
3.4. Leachate Volume and Soil Water Holding Capacity
3.5. Nitrogen Mass Balance
4. Discussion
4.1. Dry Matter Yield (DM), N Concentrations in Plant and N Plant Uptake
4.2. N2O Emissions
4.2.1. N2O Emissions during the Summer Trial
4.2.2. N2O Emissions during the Autumn Trial
4.2.3. Effect of Biochar Particle-Size and Soil Inversion on Soil Moisture: Implications on N2O Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der Weerden, T.J.; Cox, N.; Luo, J.; Di, H.J.; Podolyan, A.; Phillips, R.L.; Saggar, S.; de Klein, C.A.M.; Ettema, P.; Rys, G. Refining the New Zealand nitrous oxide emission factor for urea fertiliser and farm dairy effluent. Agric. Ecosyst. Environ. 2016, 222, 133–137. [Google Scholar] [CrossRef]
- Ministry for the Environment. New Zealand’s Greenhouse Gas Inventory 1990–2016. Available online: http://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/National%20GHG%20Inventory%20Report%201990-2016-final.pdf (accessed on 30 September 2018).
- About New Zealand’s Emissions Reduction Targets. Available online: https://www.mfe.govt.nz/climate-change/what-government-doing/emissions-reduction-targets/about-our-emissions-reduction (accessed on 30 September 2018).
- De Klein, C.A.M.; Sherlock, R.R.; Cameron, K.C. Nitrous oxide emissions from agricultural soils in New Zealand—A review of current knowledge and directions for future research. J. R. Soc. New Zeal. 2001, 31, 37–41. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; Van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms; John Wiley and Sons: New York, NY, USA, 1988; pp. 179–244. ISBN 0471882267. [Google Scholar]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation; Routledge: Abingdon, UK, 2015. [Google Scholar]
- Van Zwieten, L.; Kammen, C.; Cayuela, M.L.; Singh, B.P.; Joseph, S.; Kimber, S.; Donne, S.; Clough, T.J.; Spokas, K.A. Biochar effects on nitrous oxide and methane emissions from soil. In Biochar for Environmental Management: Science and Technology, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; pp. 489–520. ISBN 1134489536, 9781134489534. [Google Scholar]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Nelissen, V.; Saha, B.K.; Ruysschaert, G.; Boeckx, P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014, 70, 244–255. [Google Scholar] [CrossRef]
- Thomazini, A.; Spokas, K.; Hall, K.; Ippolito, J.; Lentz, R.; Novak, J. GHG impacts of biochar: Predictability for the same biochar. Agric. Ecosyst. Environ. 2015, 207, 183–191. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sanchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef] [PubMed]
- Angst, T.E.; Six, J.; Reay, D.S.; Sohi, S.P. Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California. Agric. Ecosyst. Environ. 2014, 191, 17–26. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Six, J.; Parikh, S.J. The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma 2013, 200–201, 90–98. [Google Scholar] [CrossRef]
- Verhoeven, E.; Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agric. Ecosyst. Environ. 2014, 191, 27–38. [Google Scholar] [CrossRef]
- Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Bruun, E.W.; Müller-Stöver, D.; Ambus, P.; Hauggaard-Nielsen, H. Application of biochar to soil and N2O emissions: Potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur. J. Soil Sci. 2011, 62, 581–589. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments: Original article. Soil Sci. Plant Nutr. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Saarnio, S.; Heimonen, K.; Kettunen, R. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol. Biochem. 2013, 58, 99–106. [Google Scholar] [CrossRef]
- Rose, T.J.; Keen, B.; Morris, S.G.; Quin, P.; Rust, J.; Kearney, L.; Kimber, S.; Van Zwieten, L. Application of woody biochar and woody mulch to mitigate nitrous oxide emissions from a poultry litter-amended soil in the subtropics. Agric. Ecosyst. Environ. 2016, 228, 1–8. [Google Scholar] [CrossRef]
- Kammann, C.; Ratering, S.; Eckhard, C.; Muller, C. Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Stewart, C.E.; Cotrufo, M.F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 2012, 41, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kim, H.; Yoo, G. Effects of biochar addition on CO2 and N2O emissions following fertilizer application to a cultivated grassland soil. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Bertram, J.E.; Ray, J.L.; Condron, L.M.; O’Callaghan, M.; Sherlock, R.R.; Wells, N.S. Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil. Soil Sci. Soc. Am. J. 2010, 74, 852–860. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Condron, L.M.; Sherlock, R.R.; Anderson, C.R.; Craigie, R.A. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J. Environ. Qual. 2011, 40, 468. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J. (Lincoln University, Lincoln, New Zealand). Personal communication, 2018.
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sanchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Calvelo Pereira, R.; Wisnubroto, E.; Hedley, M.J.; Camps Arbestain, M.; Green, S.; Saggar, S. Can a deep application of biochar mitigate a pulse of greenhouse gas emissions after a fertilizer application to mature pastures? Unpublished work.
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press Pty Ltd.: Melbourne, Australia, 1992; ISBN 0909605688. [Google Scholar]
- Calvelo Pereira, R.; Kaal, J.; Camps Arbestain, M.; Pardo Lorenzo, R.; Aitkenhead, W.; Hedley, M.; Macías, F.; Hindmarsh, J.; Maciá-Agulló, J.A. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 2011, 42, 1331–1342. [Google Scholar] [CrossRef]
- Enders, A.; Lehmann, J. Comparison of Wet-Digestion and Dry-Ashing Methods for Total Elemental Analysis of Biochar. Commun. Soil Sci. Plant Anal. 2012, 43, 1042–1052. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Wang, T.; Camps Arbestain, M.; Hedley, M.; Bishop, P. Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org. Geochem. 2012, 51, 45–54. [Google Scholar] [CrossRef]
- Calvelo Pereira, R.; Arbestain, M.C.; Sueiro, M.V.; Macia-Agullo, J.A. Assessment of the surface chemistry of wood-derived biochars using wet chemistry, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Soil Res. 2015, 53, 753–762. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M. Predicting C aromaticity of biochars based on their elemental composition. Org. Geochem. 2013, 62, 1–6. [Google Scholar] [CrossRef]
- Camps-Arbestain, M.; Amonette, J.E.; Singh, B.; Wang, T.; Schmidt, H.P. A biochar classification system and associated test methods. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; pp. 165–193. ISBN 1134489536, 9781134489534. [Google Scholar]
- Hewitt, A.; Dymond, J. Survey of New Zealand Soil Orders. In Ecosystem Services in New Zealand: Conditions and Trends; Dymond, J., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 121–131. ISBN 9780478347364. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Deurer, M.; Clothier, B.E.; Green, S.R.; Gee, G. Infiltration rate, hydraulic conductivity, preferential flow. In Soil Science: Step-by-Step Field Analysis; Logsdon, S., Caly, D., Moore, D., Tsegaye, T., Eds.; SSSA: Madison, WI, USA, 2008; pp. 221–234. ISBN 9780891188568. [Google Scholar]
- Luo, J.; Lindsey, S.B.; Ledgard, S.F. Nitrous oxide emissions from application of urea on New Zealand pasture. Biol. Fertil. Soils 2008, 44, 463–470. [Google Scholar] [CrossRef]
- Jones, S.K.; Famulari, D.; Di Marco, C.F.; Nemitz, E.; Skiba, U.M.; Rees, R.M.; Sutton, M.A. Nitrous oxide emissions from managed grassland: A comparison of eddy covariance and static chamber measurements. Atmos. Meas. Tech. 2011, 4, 2179–2194. [Google Scholar] [CrossRef]
- Blakemore, L.C. Soil Bureau Laboratory Methods. A. Methods for chemical analysis of soils. NZ Soil Bur. Sci. Rep. 1987, 80, 44–45. [Google Scholar]
- Kusumo, B.H.; Hedley, M.J.; Hedley, C.B.; Hueni, A.; Arnold, G.C.; Tuohy, M.P. The use of Vis-NIR spectral reflectance for determining root density: Evaluation of ryegrass roots in a glasshouse trial. Eur. J. Soil Sci. 2009, 60, 22–32. [Google Scholar] [CrossRef]
- Dane, J.H.; Hopmans, J.H. Water retention and storage. In Methods of Soil Analysis. Part 4. SSSA Book Ser. 5; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 671–717. [Google Scholar]
- Charlton, J.F.L.; Stewart, A.V. Pasture species and cultivars used in New Zealand—A list. Proc. New Zeal. Grassl. Assoc. 1999, 61, 147–166. [Google Scholar]
- Selbie, D.R.; Buckthought, L.E.; Shepherd, M.A. The Challenge of the Urine Patch for Managing Nitrogen in Grazed Pasture Systems; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 129, ISBN 9780128021385. [Google Scholar]
- Baral, K.R.; Thomsen, A.G.; Olesen, J.E.; Petersen, S.O. Controls of nitrous oxide emission after simulated cattle urine deposition. Agric. Ecosyst. Environ. 2014, 188, 103–110. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Carter, M. Contribution of nitrification and denitrification to N2O emissions from urine patches. Soil Biol. Biochem. 2007, 39, 2091–2102. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments. PLoS ONE 2014, 9, e0108340. [Google Scholar] [CrossRef] [PubMed]
- De Klein, C.A.; van Logtesjin, R.S.P. Denitrification and N2O emission from urine-affected grassland soil. Plant Soil 1994, 163, 235–241. [Google Scholar] [CrossRef]
- Hillel, D. Entry of Water into Soil. In Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Elsevier: Amsterdam, The Netherlands, 1998; p. 385. ISBN 0080544150. [Google Scholar]
- Si, B.; Dyck, M.; Parkin, G. Flow and Transport in Layered Soils. Can. J. Soil Sci. 2011, 91, 127–132. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef] [PubMed]
Properties | Units | Biochar | |
---|---|---|---|
Small | Large | ||
Particle size | mm | <2 mm | >4 mm |
pH (H2O) | - | 7.3 | 6.8 |
Liming Equivalence | % CaCO3-eq | −2.2 | −1.9 |
Bulk Density (BD) | Mg m−3 | 0.20 | 0.17 |
Total C | g kg−1 | 821 | 826 |
Total N | g kg−1 | 2.9 | 2.5 |
Total H | g kg−1 | 30.8 | 34.5 |
Total O | g kg−1 | 146 | 137 |
C/N ratio | (w/w) | 285 | 330 |
H/Corg | Atomic ratio | 0.45 | 0.50 |
O/Corg | Atomic ratio | 0.13 | 0.12 |
Ash | % | 2.9 | 2.7 |
Volatile matter | % | 18.6 | 17.8 |
Fixed C | % | 74.6 | 76.5 |
CEC | cmolc kg−1 | 1.2 | 1.0 |
Total P | g kg−1 | 0.5 | 0.5 |
Total K | g kg−1 | 2.6 | 2.4 |
Total Mg | g kg−1 | 1.7 | 1.6 |
Total Ca | g kg−1 | 5.5 | 5.5 |
Available N | mg kg−1 | 36 | 40 |
Available P | mg kg−1 | 84 | 80 |
Properties | Units | 0–10 cm | 10–20 cm | 20–40 cm |
---|---|---|---|---|
pH (H2O) | - | 5.48 | 5.51 | 5.60 |
Bulk Density (BD) | Mg m−3 | 1.05 | 1.29 | 1.43 |
Total C | g kg−1 | 35.2 | 22.6 | 13.0 |
Total N | g kg−1 | 3.4 | 2.2 | 1.2 |
C/N ratio | (w/w) | 10.4 | 10.3 | 10.8 |
Cation Exchange Capacity (CEC) | cmolc kg−1 | 20.0 | 18.0 | 15.0 |
Summer Trial | ||||
Properties (Unit) | Soil Inversion | Treatments | ||
Control | Small-Particle Size Biochar | Large-Particle Size Biochar | ||
Dry Matter (DM) (g m−2) | Un-inverted | 374aA | 350aA | 351aA |
Inverted | 374aA | 401aA | 386aA | |
Plant N concentration (g N 100 g−1) | Un-inverted | 3.4aA | 3.4aA | 3.5aA |
Inverted | 3.6aA | 3.2aA | 3.3aA | |
Plant N uptake (g m−2) | Un-inverted | 12.7aB | 11.9aA | 12.3aA |
Inverted | 13.5aA | 12.8aA | 12.8aA | |
N taken up out of added N (354 kg N ha−1) (%) | Un-inverted | 36.0aB | 33.7aA | 34.7aA |
Inverted | 38.0aA | 36.3aA | 36.1aA | |
Autumn Trial | ||||
Properties (Unit) | Soil Inversion | Treatments | ||
Control | Small-Particle Size Biochar | Large-Particle Size Biochar | ||
DM (g m−2) | Un-inverted | 179aA | 137aA | 157aA |
Inverted | 172aA | 172aA | 155aA | |
Plant N concentration (g N 100 g−1) | Un-inverted | 5.1aA | 5.3aA | 5.4aA |
Inverted | 5.2aA | 5.2aA | 5.3aA | |
Plant N uptake (g m−2) | Un-inverted | 9.2aA | 7.3aA | 8.5aA |
Inverted | 8.9aA | 8.9aA | 8.2aA | |
N taken up out of added N (563 kg N ha−1) (%) | Un-inverted | 16.2aA | 13.0aA | 15.1aA |
Inverted | 15.9aA | 15.9aA | 14.6aA |
Leaching Event | Leaching Volume (mm) between Treatments | |||||||
---|---|---|---|---|---|---|---|---|
UC | US | UL | p-Value | IC | IS | IL | p-Value | |
1st | 41a | 17b | 23b | 0.017 | 27a | 10b | 13b | 0.062 |
2nd | 24a | 26a | 26a | 0.939 | 27a | 20ab | 14b | 0.060 |
3rd | 35a | 38a | 32a | 0.750 | 39a | 42a | 52a | 0.335 |
Cumulative | 101a | 81a | 80a | 0.109 | 92a | 71.4a | 80a | 0.378 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, A.F.; Camps-Arbestain, M.; Hedley, M. Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches. Agriculture 2018, 8, 175. https://doi.org/10.3390/agriculture8110175
Mahmud AF, Camps-Arbestain M, Hedley M. Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches. Agriculture. 2018; 8(11):175. https://doi.org/10.3390/agriculture8110175
Chicago/Turabian StyleMahmud, Ainul Faizah, Marta Camps-Arbestain, and Mike Hedley. 2018. "Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches" Agriculture 8, no. 11: 175. https://doi.org/10.3390/agriculture8110175
APA StyleMahmud, A. F., Camps-Arbestain, M., & Hedley, M. (2018). Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches. Agriculture, 8(11), 175. https://doi.org/10.3390/agriculture8110175