Mapping for Autonomous Navigation of Agricultural Robots Through Crop Rows Using UAV
Abstract
:1. Introduction
1.1. Mapping for Robots
1.2. Related Work
2. Materials and Methods
2.1. A Case Study
2.2. Map Creation
2.2.1. Orthomosaic Image Creation
2.2.2. Occupancy Grid Creation
- Two thresholding (global and adaptive) operations.
- Morphological operations (dilation, erosion, opening, and closing) with different structuring elements (disc, diamond, and square).
3. Results
4. Discussion
5. The Uses of the Generated Map
- Coverage path planning (CPP): Coverage Path Planning, or CPP, is a crucial aspect of autonomous robot navigation and refers to the process of generating a path or trajectory for a robot to traverse in order to cover an entire area or region of interest. The primary objective of coverage path planning is to ensure that the robot can systematically explore and survey the target environment efficiently and effectively, minimizing redundant or unnecessary movements. Several algorithms are used for coverage path planning, such as grid-based methods [48], cell decomposition methods [49], Voronoi-based methods [50], potential field methods [51], and sampling-based methods [52]. However, all the methods require finding the navigable area for the robot first; hence, this kind of map would be indispensable.
- Energy budget calculation: Autonomous mobile robots operating alone or in fleets need to know their energy consumption before starting operations to calculate when to go to the nearest station for manual refueling or recharge their batteries (in the case of electric vehicles). Moreover, estimating the energy budget is very important when selecting the installation location for charging stations.
- Global path planning: Global path planning is a fundamental aspect of autonomous mobile robot navigation. It involves finding a high-level path from the robot’s initial position to the goal location, considering the overall environment and the robot’s capabilities. This path is typically represented as a series of waypoints, or key markers the robot must follow to reach its destination. The global path is planned before the robot starts moving, and it provides a general roadmap for the entire navigation task. The environment is usually represented as a map, either in a grid-based format or using continuous representations like occupancy grids or point clouds. The map contains information about obstacles, free spaces, and other relevant features. Various algorithms are used to compute the global path, and these algorithms find the shortest or most optimal path from the starting point to the goal, considering the map’s obstacles and terrain. Global path planning may consider high-level constraints, such as avoiding specific areas (e.g., pivot ruts), considering different terrain types, or optimizing for specific criteria like energy consumption or time. Once the global path is generated, the robot follows it until it encounters local obstacles or deviations from the planned trajectory.
- Obstacle avoidance: The robot could use the map to detect obstacles such as pivot ruts, large boulders/rocks, or big ditches in its path. By comparing the planned trajectory with the occupancy status of grid cells along the path, the robot could identify potential obstacles or collisions and adjust its route to avoid them. Global planning algorithms use map information to generate safe, smooth motion trajectories that avoid obstacles/collisions.
6. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMCL | Adaptive Monte Carlo localization |
CNN | Convolutional Neural Network |
CPP | Coverage Path Planning |
ExG | Excess Green Index |
FFT | Fast Fourier Transform |
GIS | Geographic Information Systems |
GNSS | Global Navigation Satellite Systems |
IEEE | Institute of Electrical and Electronics Engineers |
NDVI | Normalized Difference Vegetation Index |
pgm | Portable Gray Map |
RGB | Red, Green, and Blue |
ROS | Robot Operating System |
RTK-GPS | Real-Time Kinematic Global Positioning System |
SLAM | Simultaneous Localization and Mapping |
UAV | Unmanned Aerial Vehicle |
UGV | Unmanned Ground Vehicle |
References
- Thrun, S.; Burgard, W.; Fox, D. A probabilistic approach to concurrent mapping and localization for mobile robots. Auton. Robot. 1998, 5, 253–271. [Google Scholar] [CrossRef]
- Stachniss, C. Exploration and Mapping with Mobile Robots. Ph.D. Thesis, Verlag Nicht Ermittelbar, Zürich, Switzerland, 2006. [Google Scholar]
- González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, B.; Zhang, L. Detection Algorithm for Crop Multi-Centerlines Based on Machine Vision. Trans. ASABE 2008, 51, 1089–1097. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Farrell, J. Aided Navigation: GPS with High Rate Sensors; McGraw-Hill, Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, L.; Grift, T.E. Variable field-of-view machine vision based row guidance of an agricultural robot. Comput. Electron. Agric. 2012, 84, 85–91. [Google Scholar] [CrossRef]
- Kiani, F.; Seyyedabbasi, A.; Nematzadeh, S.; Candan, F.; Çevik, T.; Anka, F.A.; Randazzo, G.; Lanza, S.; Muzirafuti, A. Adaptive metaheuristic-based methods for autonomous robot path planning: Sustainable agricultural applications. Appl. Sci. 2022, 12, 943. [Google Scholar] [CrossRef]
- Hassanein, M.; Khedr, M.; El-Sheimy, N. Crop row detection procedure using low-cost UAV imagery system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 349–356. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front. Plant Sci. 2017, 8, 252873. [Google Scholar] [CrossRef] [PubMed]
- Pádua, L.; Adão, T.; Hruška, J.; Sousa, J.J.; Peres, E.; Morais, R.; Sousa, A. Very high resolution aerial data to support multi-temporal precision agriculture information management. Procedia Comput. Sci. 2017, 121, 407–414. [Google Scholar] [CrossRef]
- Soares, G.A.; Abdala, D.D.; Escarpinati, M.C. Plantation Rows Identification by Means of Image Tiling and Hough Transform. In Proceedings of the VISIGRAPP (4:VISAPP), Madeira, Portugal, 27–29 January2018; pp. 453–459. [Google Scholar]
- Louargant, M.; Jones, G.; Faroux, R.; Paoli, J.N.; Maillot, T.; Gée, C.; Villette, S. Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information. Remote Sens. 2018, 10, 761. [Google Scholar] [CrossRef]
- Rabatel, G.; Delenne, C.; Deshayes, M. A non-supervised approach using Gabor filters for vine-plot detection in aerial images. Comput. Electron. Agric. 2008, 62, 159–168. [Google Scholar] [CrossRef]
- Ji, R.; Qi, L. Crop-row detection algorithm based on Random Hough Transformation. Math. Comput. Model. 2011, 54, 1016–1020. [Google Scholar] [CrossRef]
- Vidović, I.; Cupec, R.; Hocenski, Z. Crop row detection by global energy minimization. Pattern Recognit. 2016, 55, 68–86. [Google Scholar] [CrossRef]
- Delenne, C.; Durrieu, S.; Rabatel, G.; Deshayes, M. A Local Fourier Transform approach for vine plot extraction from aerial images. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 443–456. [Google Scholar]
- Delenne, C.; Durrieu, S.; Rabatel, G.; Deshayes, M.; Bailly, J.S.; Lelong, C.; Couteron, P. Textural approaches for vineyard detection and characterization using very high spatial resolution remote sensing data. Int. J. Remote Sens. 2008, 29, 1153–1167. [Google Scholar] [CrossRef]
- Mortensen, A.K.; Dyrmann, M.; Karstoft, H.; Jørgensen, R.N.; Gislum, R. Semantic Segmentation of Mixed Crops Using Deep Convolutional Neural Network. 2016. Available online: https://conferences.au.dk/uploads/tx_powermail/biomap_-_cigr_2016_-_paper_-_final.pdf (accessed on 8 March 2025).
- Bah, M.D.; Hafiane, A.; Canals, R. Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef]
- Osco, L.P.; De Arruda, M.d.S.; Junior, J.M.; Da Silva, N.B.; Ramos, A.P.M.; Moryia, E.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T.; et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- IEEE Standard for Robot Map Data Representations for Navigation. 2015. Available online: https://ieeexplore.ieee.org/document/7112058 (accessed on 8 March 2025).
- Kortenkamp, D.; Bonasso, R.P.; Murphy, R. Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7, 278–288. [Google Scholar] [CrossRef]
- Dissanayake, M.G.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; Csorba, M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 2001, 17, 229–241. [Google Scholar] [CrossRef]
- Thrun, S. Learning metric-topological maps for indoor mobile robot navigation. Artif. Intell. 1998, 99, 21–71. [Google Scholar] [CrossRef]
- Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97—‘Towards New Computational Principles for Robotics and Automation’, Monterey, CA, USA, 10–11 July 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 146–151. [Google Scholar]
- Moravec, H.; Elfes, A. High resolution maps from wide angle sonar. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25-28 March 1985; IEEE: Piscataway, NJ, USA, 1985; Volume 2, pp. 116–121. [Google Scholar]
- Li, Y.; Ruichek, Y. Occupancy grid mapping in urban environments from a moving on-board stereo-vision system. Sensors 2014, 14, 10454–10478. [Google Scholar] [CrossRef]
- Alsadik, B.; Karam, S. The simultaneous localization and mapping (SLAM)-An overview. J. Appl. Sci. Technol. Trends 2021, 2, 147–158. [Google Scholar] [CrossRef]
- Filliat, D.; Meyer, J.A. Map-based navigation in mobile robots:: I. A review of localization strategies. Cogn. Syst. Res. 2003, 4, 243–282. [Google Scholar] [CrossRef]
- Cantelli, L.; Mangiameli, M.; Melita, C.D.; Muscato, G. UAV/UGV cooperation for surveying operations in humanitarian demining. In Proceedings of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linköping, Sweden, 21–26 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6. [Google Scholar]
- Minaeian, S.; Liu, J.; Son, Y.J. Vision-based target detection and localization via a team of cooperative UAV and UGVs. IEEE Trans. Syst. Man, Cybern. Syst. 2015, 46, 1005–1016. [Google Scholar] [CrossRef]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperation of unmanned systems for agricultural applications: A theoretical framework. Biosyst. Eng. 2022, 223, 61–80. [Google Scholar] [CrossRef]
- Huo, J.; Zenkevich, S.L.; Nazarova, A.V.; Zhai, M. Path planning based on map matching in UAV/UGV collaboration system. Int. J. Intell. Unmanned Syst. 2021, 9, 81–95. [Google Scholar] [CrossRef]
- Li, J.; Deng, G.; Luo, C.; Lin, Q.; Yan, Q.; Ming, Z. A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems. IEEE Trans. Veh. Technol. 2016, 65, 9585–9596. [Google Scholar] [CrossRef]
- Katikaridis, D.; Moysiadis, V.; Tsolakis, N.; Busato, P.; Kateris, D.; Pearson, S.; Sørensen, C.G.; Bochtis, D. UAV-supported route planning for UGVs in semi-deterministic agricultural environments. Agronomy 2022, 12, 1937. [Google Scholar] [CrossRef]
- Macenski, S.; Martín, F.; White, R.; Ginés Clavero, J. The Marathon 2: A Navigation System. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Macenski, S.; Moore, T.; Lu, D.; Merzlyakov, A.; Ferguson, M. From the desks of ROS maintainers: A survey of modern & capable mobile robotics algorithms in the robot operating system 2. Robot. Auton. Syst. 2023, 168, 104493. [Google Scholar]
- Iovino, M.; Scukins, E.; Styrud, J.; Ögren, P.; Smith, C. A survey of behavior trees in robotics and AI. Robot. Auton. Syst. 2022, 154, 104096. [Google Scholar] [CrossRef]
- Iovino, M.; Förster, J.; Falco, P.; Chung, J.J.; Siegwart, R.; Smith, C. On the programming effort required to generate Behavior Trees and Finite State Machines for robotic applications. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 5807–5813. [Google Scholar] [CrossRef]
- Mier, G.; Valente, J.; de Bruin, S. Fields2Cover: An Open-Source Coverage Path Planning Library for Unmanned Agricultural Vehicles. IEEE Robot. Autom. Lett. 2023, 8, 2166–2172. [Google Scholar] [CrossRef]
- Gadhwal, M.; Sharda, A.; Sangha, H.S.; Van der Merwe, D. Spatial corn canopy temperature extraction: How focal length and sUAS flying altitude influence thermal infrared sensing accuracy. Comput. Electron. Agric. 2023, 209, 107812. [Google Scholar] [CrossRef]
- Yousefi, J. Image Binarization Using Otsu Thresholding Algorithm; University of Guelph: Ontario, ON, Canada, 2011; Volume 10, p. 9. [Google Scholar]
- Shao, X.; Zheng, R.; Wei, J.; Guo, D.; Yang, T.; Wang, B.; Zhao, Y. Path planning of mobile Robot based on improved ant colony algorithm based on Honeycomb grid. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 5, pp. 1358–1362. [Google Scholar]
- Šeda, M. Roadmap methods vs. cell decomposition in robot motion planning. In Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, 16–19 February 2007; World Scientific and Engineering Academy and Society (WSEAS): Athens, Greece, 2007; pp. 127–132. [Google Scholar]
- Gomez, C.; Fehr, M.; Millane, A.; Hernandez, A.C.; Nieto, J.; Barber, R.; Siegwart, R. Hybrid topological and 3d dense mapping through autonomous exploration for large indoor environments. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 9673–9679. [Google Scholar]
- Liu, H.; Wang, D.; Wang, Y.; Lu, X. Research of path planning for mobile robots based on fuzzy artificial potential field method. Control Eng. China 2022, 29, 33–38. [Google Scholar]
- Palmieri, L.; Koenig, S.; Arras, K.O. RRT-based nonholonomic motion planning using any-angle path biasing. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2775–2781. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansur, H.; Gadhwal, M.; Abon, J.E.; Flippo, D. Mapping for Autonomous Navigation of Agricultural Robots Through Crop Rows Using UAV. Agriculture 2025, 15, 882. https://doi.org/10.3390/agriculture15080882
Mansur H, Gadhwal M, Abon JE, Flippo D. Mapping for Autonomous Navigation of Agricultural Robots Through Crop Rows Using UAV. Agriculture. 2025; 15(8):882. https://doi.org/10.3390/agriculture15080882
Chicago/Turabian StyleMansur, Hasib, Manoj Gadhwal, John Eric Abon, and Daniel Flippo. 2025. "Mapping for Autonomous Navigation of Agricultural Robots Through Crop Rows Using UAV" Agriculture 15, no. 8: 882. https://doi.org/10.3390/agriculture15080882
APA StyleMansur, H., Gadhwal, M., Abon, J. E., & Flippo, D. (2025). Mapping for Autonomous Navigation of Agricultural Robots Through Crop Rows Using UAV. Agriculture, 15(8), 882. https://doi.org/10.3390/agriculture15080882