Multi-Objective Nitrogen Optimization in Tea Cultivation: A Pathway to Achieve Sustainability in Cash Crop Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design
2.3. Measurements and Calculation
2.3.1. Tea Sampling and N Analysis
2.3.2. Estimation of N Use Efficiency
2.3.3. System Boundary and Nitrogen Losses
2.3.4. Estimation of Environmental Impacts
2.3.5. Estimation of Benefits
2.4. Statistical Analysis
3. Results
3.1. Tea Yield and N Uptake
3.2. N Input, Output, and Surplus
3.3. Environmental Impacts
3.4. Economic Assessment
3.5. Optimal N Application Rate
4. Discussion
4.1. Effects of N Rates on Tea Yield and N Balance
4.2. Effects of N Rates on Environmental and Benefits Impacts
4.3. Options for Improving N Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tataridas, A.; Folina, A.; Mavroeidis, A.; Kousta, A.; Chachalis, D. Evaluation of various nitrogen indices in N-fertilizers with inhibitors in field crops: A review. Agronomy 2021, 11, 418. [Google Scholar] [CrossRef]
- Lassaletta, L.; Sanz-Cobena, A.; Aguilera, E.; Billen, G.; Garnier, J.; Bouwman, L.; Mueller, N.D.; Vitousek, P.M. Nitrogen dynamics in cropping systems under Mediterranean climate: A systemic analysis. Environ. Res. Lett. 2021, 16, 064050. [Google Scholar] [CrossRef]
- Estavillo, J.M.; Huerfano, X.; Dunabeitia, M.K.; Aranguren, I.; Artetxe, R.; Campillo, C.; Lasa, B. Response of wheat storage proteins and breadmaking quality to dimethylpyrazole-based nitrification inhibitors under different nitrogen fertilization splitting. Plants 2021, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- Školníková, M.; Škarpa, P.; Ryant, P.; Kozáková, Z. Response of winter wheat (Triticum aestivum L.) to fertilizers with nitrogen-transformation inhibitors and timing of their application under field conditions. Agronomy 2022, 12, 223. [Google Scholar] [CrossRef]
- Cong, W.F.; Ying, H.; Ying, F.; An, Z. Green technology for increasing grain crop production and efficiency: Innovation and application in China. Front. Agric. Sci. Eng. 2025, 12, 431–440. [Google Scholar] [CrossRef]
- Fu, C.; Xiang, L.; Liu, Y.; Zhou, T. Response of nitrogen emissions to land use changes and driving forces analysis in Jiangxi province under multiple scenarios. Sci. Rep. 2025, 15, 29599. [Google Scholar] [CrossRef]
- Wang, C.; Harrison, M.T.; Liu, D.L.; Yang, R.; Zhou, M. Dire need for quantification of environmental impacts associated with breeding climate-resilient crops. Agric. Syst. 2025, 211, 103861. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Liu, B.; Liu, Y.; Li, F.; Khosla, R.; Mulla, D.J.; Zhang, F. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Res. 2017, 214, 365–372. [Google Scholar] [CrossRef]
- Singh, G.; Rathore, M.; Yadav, H. Nitrogen-management strategy through leaf-colour chart and SPAD meter for optimizing the productivity in irrigated wheat (Triticum aestivum). Indian J. Agron. 2023, 68, 2. [Google Scholar] [CrossRef]
- Kumar, S.; Patel, D.; Singh, N. Advancements in precision nitrogen management for sustainable agriculture. In Sustainable Agroecosystems—Principles and Practices; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- An, Z.; Yang, Y.; Yang, X.; Ma, W.; Jiang, W.; Li, Y.; Huang, J. Promoting sustainable smallholder farming via multistakeholder collaboration. Proc. Natl. Acad. Sci. USA 2024, 121, e2319519121. [Google Scholar] [CrossRef]
- Bai, H.; Xiao, D.; Liu, D.L.; Tao, F. Impacts of future climate change and management practices to yield, eco-efficiency and global warming potential for rice–wheat rotation system. J. Sci. Food Agric. 2025, 105, 6138–6150. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Z.; Zhang, M.; Shi, Y.; Zhu, Q.; Sun, Y.; Zhou, H.; Li, C.; Yang, Y.; Geng, J. Improving crop yields, nitrogen use efficiencies, and profits by using mixtures of coated controlled-released and uncoated urea in a wheat-maize system. Field Crops Res. 2017, 205, 106–115. [Google Scholar] [CrossRef]
- Li, X.; Piao, L.; Duan, W.; Bai, Y.; Zhu, N.; Tang, Q.; He, F. Optimal nitrogen accumulation and remobilization can synergistically improve maize yield and nitrogen-use efficiency under low-nitrogen conditions. Agronomy 2025, 15, 1159. [Google Scholar] [CrossRef]
- Xia, Y.; Yan, X. Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake region of China. Sustain. Sci. 2012, 7, 33–44. [Google Scholar] [CrossRef]
- Hu, Q.; Gu, Y.; Lu, X.; Jiang, W.; Zhang, K.; Zhu, H.; Li, G.; Xu, F. Effects of one-time reduced basal application of controlled-release nitrogen fertilizer with increased planting density on yield and nitrogen utilization of rice. Agronomy 2024, 14, 3072. [Google Scholar] [CrossRef]
- Li, T.; Xue, L.; Liu, P.; Zhang, S.; Huang, J.; Sun, J. The impact of cold storage facilities implemented at the production site on mitigating fruit and vegetable losses in China. J. Clean. Prod. 2025, 463, 146460. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, B.; Liu, C.; Yan, B.; Lin, L.; Zhao, Y.; Xu, H. Sustainability of different straw incorporation strategies in northeastern China: Impacts on rice yield formation, nitrogen use efficiency, and temporal soil properties. Agronomy 2025, 15, 729. [Google Scholar] [CrossRef]
- Yin, L.; Tao, F.; Chen, Y.; Wang, Y.; Ciais, P. Spatiotemporal changes and drivers of net greenhouse gas emissions from major cropping systems in China during 1984–2018. Resour. Conserv. Recycl. 2026, 224, 108569. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Lu, Z.; Zhang, W.; Yang, J.; Hou, Y.; Wang, X.; Zhou, S.; Li, Y.; Wu, L. Carbon footprint of a typical pomelo production region in China based on farm survey data. J. Clean. Prod. 2020, 277, 124041. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Guan, Y.; Yue, X.; Fang, Z.; Mulla, D.J. Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China. Sustainability 2019, 11, 706. [Google Scholar] [CrossRef]
- Yao, Y.; Zeng, K.; Deji, Z.; Zhao, Z.; Wang, H. The split injection of water-soluble fertilizers effectively reduces N2O, CH4 and NH3 emissions while simultaneously improving rice yield and harvest index. Field Crops Res. 2024, 305, 109250. [Google Scholar] [CrossRef]
- Lei, Y.; Zhou, X.; Cheng, H. Assessment of emergy, environmental and economic sustainability of the mango orchard production system in Hainan, China. Sustainability 2025, 17, 7030. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, K.; Fang, B.; Wang, X.; Wang, S. Optimization of nitrogen allocation and remobilization improves nitrogen use efficiency of winter wheat in the North China Plain. Eur. J. Agron. 2025, 171, 127782. [Google Scholar] [CrossRef]
- Xu, W.; Yang, B.; Jia, Z.; Han, W. Effects of Different Water and Nitrogen on Nitrate Distribution and Leaching in Soil, Nitrogen Uptake, Utilization and Translocation by Winter Wheat. SSRN 2025, 48, 5292864. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, M.; Zhang, L.; Hao, L.; Zhang, Z.; Lv, L.; Zhang, J. Micro-Sprinkling Fertigation Enhances Wheat Grain Yield and Nitrogen Use Efficiency by Reducing C, N Redundancy and Increasing Root-Water-Nitrogen Spatiotemporal Coordination. SSRN 2025, 36, 5294535. [Google Scholar] [CrossRef]
- Sarkar, L. Assessment of heavy metals in Gangaram tea garden with special reference to statistical construal and pollution indices. J. Environ. Sci. Univ. Kashmir 2024, 1–12. [Google Scholar]
- Xie, K.; Zhu, Y.; Ma, Y.; Chen, Y.; Chen, S. Willingness of tea farmers to adopt ecological agriculture techniques based on the UTAUT extended model. Int. J. Environ. Res. Public Health 2022, 19, 15351. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, W.; Liu, X.; Li, Z.; Zhao, Y. Complex factor combinations driving tea growers to adopt ecological agricultural practices in tea gardens. Front. Ecol. Evol. 2024, 12, 1431779. [Google Scholar] [CrossRef]
- Weng, C.; Li, Y.; Huang, W. Exploration of Factors Influencing Oolong Quality and Control Technology in Anxi County. Agric. Sci. Technol. 2014, 15, 1400. [Google Scholar]
- Lv, X.; Kong, H.; Luo, Y.; Dong, D.; Liu, W.; Wu, D.; Ye, Z.; Ma, J. The impact of magnesium on the growth, physiology and quality of tea (Camellia sinensis L.) plants under acid stress. Agronomy 2024, 14, 767. [Google Scholar] [CrossRef]
- Chen, H.; Jia, Y.; Xu, H.; Wang, Y.; Zhou, Y.; Huang, Z.; Yang, L.; Li, Y.; Chen, L.S.; Guo, J. Ammonium nutrition inhibits plant growth and nitrogen uptake in citrus seedlings. Sci. Hortic. 2020, 272, 109526. [Google Scholar] [CrossRef]
- Srivastava, R.; Panda, R.; Chakraborty, A.; Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 2018, 221, 339–349. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; ISBN 978-92-9169-162-3. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 15 June 2025).
- Wang, X.; Zou, C.; Zhang, Y.; Shi, X.; Liu, J.; Fan, S.; Liu, Y.; Du, Y.; Zhao, Q.; Tan, Y. Environmental impacts of pepper (Capsicum annuum L.) production affected by nutrient management: A case study in southwest China. J. Clean. Prod. 2018, 171, 934–943. [Google Scholar] [CrossRef]
- Sun, G.; Dong, Y.; Yin, W.; Wu, Y. A new core-inhibitor coated urea that increases wheat yield and nitrogen use efficiency by reducing nitrogen loss and regulating soil nitrogen supply. Field Crops Res. 2025, 333, 110080. [Google Scholar] [CrossRef]
- Luo, L.; Luo, B.; Tai, A.P.K. Reactive nitrogen from agriculture: A review of emissions, air quality, and climate impacts. Curr. Pollut. Rep. 2025, 11, 41. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Y.; Li, P.; Wu, X.; Qiu, H.; Yin, W.; Zhao, L. Organic fertilizer substitution enhances maize yield and quality under reduced irrigation. J. Integr. Agric. 2025, 24, 1356–1368. [Google Scholar]
- Wang, B.; Wang, S.; Li, G.; Fu, L.; Chen, H. Reducing nitrogen fertilizer usage coupled with organic substitution improves soil quality and boosts tea yield and quality in tea plantations. J. Sci. Food Agric. 2025, 105, 3301–3312. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ma, J.; Yue, X.; Zeng, H.; Wang, C.; Huang, Q. Nitrate dynamics in deep soils of the Loess Plateau: Impact of different land use types. Ecol. Indic. 2025, 175, 113578. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Tang, Y.; Liu, B. Handbook of Sustainable Fertilization and Crop Nutrient Management, 3rd ed.; Science Press: Beijing, China, 2023; p. 572. ISBN 9787030739481. [Google Scholar]
- Zhang, D.; Li, W.; Xin, C.; Tang, W.; Eneji, A.E.; Dong, H. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crops Res. 2012, 138, 63–70. [Google Scholar] [CrossRef]
- Ma, J.; Shang, C.; Zhang, X.; Yin, B.; Zhen, W. Optimized agronomic management in North China Plain to maintain wheat (Triticum aestivum L.) yield while reducing water and fertilizer inputs. Agronomy 2025, 15, 1053. [Google Scholar] [CrossRef]
- He, X.; Wu, P.; Wang, Z.; Zhang, L.; Wu, S.; Liu, X.; Yang, X. Subsurface irrigation system with ceramic emitters stabilizes soil nitrogen availability to enhance tomato yield and nitro-gen use efficiency in greenhouse systems. Plant Soil 2025, in press. [CrossRef]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Wang, Z.; Zhao, Y.; Cheng, J.; Wang, X.; Ren, H. Quantifying contributions of efficiency-enhanced nitrogen fertilizers to maize production and environmental sustainability: Evidence for policy frameworks. Agric. Syst. 2025, 230, 104488. [Google Scholar] [CrossRef]
- Yin, R.; Li, L.; Li, X.; Liu, H.; Yao, J.; Ma, C.; Pu, L. Positive effects of nitrogen fertilization on flavor ingredients of tea (Wuniuzao), soil physicochemical properties, and microbial communities. Curr. Res. Food Sci. Technol. 2025, 37, 103911. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, W.; Lin, L.; Li, Z.; Chen, H. Does environmental regulation affect China’s agricultural green total factor productivity? Considering the role of technological innovation. Agriculture 2025, 15, 649. [Google Scholar] [CrossRef]
- Martínez-García, L.B.; De Deyn, G.B.; Pugnaire, F.I.; Kothamasi, D.; van der Heijden, M.G. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob. Change Biol. 2017, 23, 5228–5236. [Google Scholar] [CrossRef]
- Yu, H.; Sun, Y.; Cui, Y.; Tan, X.; Hou, Y.; Kuang, Z. The impact of farmers’ cognition and attitudes on the adoption of conservation tillage: An empirical study based on the Lishu Model. Sustainability 2025, 17, 5649. [Google Scholar] [CrossRef]
- Wang, L.; Hui, C.; Sandhu, H.S.; Li, Z.; Zhao, Z. Population dynamics and associated factors of cereal aphids and armyworms under global change. Sci. Rep. 2015, 5, 18801. [Google Scholar] [CrossRef] [PubMed]
- Fallah, S.; Abedini Dastgerdi, H.; Kaul, H.P.; Salehi, A.S. Subsurface banding of poultry manure enhances photosynthetic efficiency, yield, and nutrient uptake in buckwheat (Fagopyrum esculentum Moench). Plants 2025, 14, 2700. [Google Scholar] [CrossRef] [PubMed]
- Haro Altamirano, J.P.; Carrillo Barahona, W.E.; Quinde, L.M.F.; Altamirano, M.R. Determination of the sustainability of soil quality and crop health of two varieties of coffee, Rio Blanco, Ecuador. Trop. Subtrop. Agroecosystems 2025, 28, 006. [Google Scholar] [CrossRef]
- Tang, X.Q.; Jiang, C.M.; Li, H.J.; Tian, J.; Li, D.W.; Zhang, X.; Ge, X.L.; Liu, X.; Gao, W.J.; Liu, G.L.; et al. Combined application of biochar and phosphorus influenced maize production and soil properties in the Yellow River Delta: A comparison between contrasting weather conditions. Plant Soil. Environ. 2025, 71, 104488. [Google Scholar] [CrossRef]
- Yang, Y.; Ni, X.; Zhou, Z.; Yu, L.; Liu, B.; Yang, Y.; Wu, Y. Performance of matrix-based slow-release urea in reducing nitrogen loss and improving maize yields and profits. Field Crops Res. 2017, 212, 73–81. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, N.; Ma, Q.; Zhou, J.; Sun, T.; Zhang, X.; Wu, L. Applying Nutrient Expert system for rational fertilisation to tea (Camellia sinensis) reduces environmental risks and increases economic benefits. J. Clean. Prod. 2021, 305, 127197. [Google Scholar] [CrossRef]
- He, M.; Xin, X.; Meng, L.; Yan, X.; Zhao, C.; Cai, Z. Long-term appropriate N management can continuously enhance gross N mineralization rates and crop yields in a maize-wheat rotation system. Biol. Fertil. Soils 2023, 59, 763–778. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Mitigation strategies for soil acidification based on optimal nitrogen management. Front. Agric. Sci. Eng. 2024, 11, 229–242. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Gao, H.; Li, B.; Wang, H.; Yan, Q.; Ollenburger, M.; Zhang, W. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. J. Clean. Prod. 2019, 241, 118295. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Liu, Q.; Zong, H.; Zhang, X. Effect of long-term application of manure and nitrogen fertilizer on infiltration for a wheat–maize rotation system. Land Degrad. Dev. 2023, 34, 326–338. [Google Scholar] [CrossRef]
N Treatment | Agronomic Efficiency NAE (kg kg−1) | Recovery Efficiency NRE (%) | Partial Factor Productivity NPFP (kg kg−1) |
---|---|---|---|
N0 | / | / | / |
N150 | 26.89 ± 16.31 a | 28.01 ± 6.53 a | 92.72 ± 24.69 a |
N300 | 10.43 ± 5.00 ab | 9.80 ± 1.90 b | 43.34 ± 7.26 b |
N450 | 7.60 ± 2.57 b | 8.94 ± 4.58 b | 29.54 ± 5.55 b |
N600 | 5.03 ± 3.95 b | 3.18 ± 2.22 b | 21.49 ± 6.91 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, J.; Yang, H.; Huang, M.; Yan, X.; Zeng, X.; Guo, L.; Wu, L. Multi-Objective Nitrogen Optimization in Tea Cultivation: A Pathway to Achieve Sustainability in Cash Crop Systems. Agriculture 2025, 15, 1949. https://doi.org/10.3390/agriculture15181949
Pei J, Yang H, Huang M, Yan X, Zeng X, Guo L, Wu L. Multi-Objective Nitrogen Optimization in Tea Cultivation: A Pathway to Achieve Sustainability in Cash Crop Systems. Agriculture. 2025; 15(18):1949. https://doi.org/10.3390/agriculture15181949
Chicago/Turabian StylePei, Jinze, Hongyu Yang, Menghan Huang, Xiaojun Yan, Xinran Zeng, Lijin Guo, and Liangquan Wu. 2025. "Multi-Objective Nitrogen Optimization in Tea Cultivation: A Pathway to Achieve Sustainability in Cash Crop Systems" Agriculture 15, no. 18: 1949. https://doi.org/10.3390/agriculture15181949
APA StylePei, J., Yang, H., Huang, M., Yan, X., Zeng, X., Guo, L., & Wu, L. (2025). Multi-Objective Nitrogen Optimization in Tea Cultivation: A Pathway to Achieve Sustainability in Cash Crop Systems. Agriculture, 15(18), 1949. https://doi.org/10.3390/agriculture15181949