Quantitative Changes in Selected Soil Health Indices as a Result of Long-Term (23-Year) Cultivation of Winter Wheat in Various Crop Rotations: Case Study for Sandy Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Sampling
2.3. Methods
2.4. Statistical Analysis
3. Results
3.1. Impact of Experimental Factors on pH, TOC, TN, HSC, and Q4/6 Values
3.2. Macronutrient Availability Under Long-Term Agrotechnical Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernandez-Galvez, J.; Cabellero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impact on soil attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar] [CrossRef]
- Chahal, I.; Hooker, D.C.; Deen, B.; Janovicek, K.; Van Eerd, L.L. Long-term effects of crop rotation, tillage and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil Till. Res. 2021, 213, 105121. [Google Scholar] [CrossRef]
- Sanchez-Navarro, A.; Sanchez-Martinez, J.; Barba-Corbalan, E.M.; Valverde-Perez, M.; Girona-Ruiz, A.; Delgano-Iniesta, M.J. Long-term effects of the use of organic amendments and crop rotation on soil properties in southeast Spain. Agronomy 2021, 11, 2363. [Google Scholar] [CrossRef]
- Masilionyte, L.; Kriaučiuniene, Z.; Šarauskis, E.; Arlauskiene, A.; Krikštolaitis, R.; Šlepetiene, A.; Jablonskyte-Rašče, D.; de Jong van Lier, Q. Effect of long-term crop rotation and fertilization management on soil humus dynamic in organic and sustainable agricultural management system. Soil Res. 2021, 59, 573–585. [Google Scholar] [CrossRef]
- Common Agricultural Practices. 2025. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (accessed on 15 May 2025).
- Jakubus, M.; Černe, M.; Palčić, I.; Pasković, I.; Ban, S.G.; Ban, D. The application of sewage sludge-derived compost or biochar as a nature-based solution (NBS) for healthier soil. Sustainability 2025, 17, 1630. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryl, G.; Pandey, M.; Shrestha, J. Diversified crop rotation: An approach for sustainable agriculture production. Adv. Agric. 2021, 8924087. [Google Scholar] [CrossRef]
- Babulicová, M.; Gavurníková, S. Influence of fertilisation and crop rotation on grain yield and quality of winter wheat (Triticum aestivum L.). Agriculture 2021, 67, 191–205. [Google Scholar] [CrossRef]
- Reckling, M.; Albertsson, J.; Vermue, A.; Carlsson, G.; Watson, C.A.; Justes, E.; Bergkvist, G.; Jensen, E.S.; Topp, C.F.E. Diversification improves the performance of cereals in European cropping systems. Agron. Sustain. Dev. 2022, 42, 118. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of crop diversity on agroecosystem function: Crop yield response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Wozniak, A. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. Int. J. Plant Prod. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Babulicová, M.; Gavurníková, S. The influence of cereal share in crop rotations on the grain yield and quality of winter wheat. Agriculture 2015, 61, 12–21. [Google Scholar] [CrossRef]
- Schlegel, A.J.; Assefa, Y.; Haag, L.A.; Thompson, C.R.; Stone, L.R. Long-term tillage on yield and water use of grain sorghum and winter wheat. Agron. J. 2018, 110, 269–280. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Jauhiainen, L. Unexploited potential to diversify monotonous crop sequencing at high latitudes. Agric. Syst. 2019, 174, 73–82. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Expanding wheat yields with expansion. New Phytol. 2021, 230, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Duvnjak, J.; Katanic, Z.; Sarcevic, H.; Spanic, V. Analysis of the photosynthetic parameters, grain yield, and quality of different winter wheat varieties over a two-year period. Agronomy 2024, 14, 478. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. 2023. Available online: http://www.fao.org/sustainable-development-goals/en/ (accessed on 15 May 2025).
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef]
- Bapela, T.; Shimelis, H.; Tsilo, T.J.; Mathew, I. Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants 2022, 11, 1331. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Mwadzingeni, L.; Shimelis, H.; Rees, D.J.G.; Tsilo, T.J. Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE 2017, 12, e0171692. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Siebert, S.; Hüging, H.; Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 2018, 8, 4891. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Barłóg, P.; Kunzová, E. How weather and fertilization affected grain yield and stability of winter wheat in a long-term trial in the South Moravian Region, Czech Republic. Agronomy 2023, 13, 2293. [Google Scholar] [CrossRef]
- Węgrzyn, A.; Klimek-Kopyra, A.; Dacewicz, E.; Skowera, B.; Grygierzec, W.; Kulig, B.; Flis-Olszewska, E. Effect of selected meteorological factors on the growth rate and seed yield of winter wheat—A case study. Agronomy 2022, 12, 2924. [Google Scholar] [CrossRef]
- Dar, E.A.; Brar, A.S.; Mishra, S.K.; Singh, K.B. Simulating response of wheat to timing and depth of irrigation water in drip irrigation system using CERES-Wheat model. Field Crops Res. 2017, 214, 149–163. [Google Scholar] [CrossRef]
- Liu, X.; Yin, B.; Bao, X.; Hou, X.; Wang, T.; Shang, C.; Yang, M.; Zhen, W. Optimization of irrigation period improves wheat yield by regulating source-sink relationship under water deficit. Eur. J. Agron. 2024, 156, 127164. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Chen, S.; Sun, H.; Shao, L. Subsoil compaction and irrigation regimes affect the root–shoot relation and grain yield of winter wheat. Agric. Water Manag. 2015, 154, 59–67. [Google Scholar] [CrossRef]
- Zeng, R.; Yao, F.; Zhang, S.; Yang, S.; Bai, Y.; Zhang, J.; Wang, J.; Wang, X. Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain. Agric. Water Manag. 2021, 256, 107063. [Google Scholar] [CrossRef]
- Schils, R.; Olesen, J.E.; Kersebaum, K.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; et al. Cereal yield gaps across Europe. Eur. J. Agron. 2018, 101, 109–120. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Salo, T.; Jauhiainen, L.; Lehtonen, H.; Sievilainen, E. Static yields and quality issues: Is the agri-environment program the primary driver? Ambio 2015, 44, 544–556. [Google Scholar] [CrossRef]
- Belete, T.; Yadete, E. Effect of mono cropping on soil health and fertility management for sustainable agriculture practices: A review. J. Plant Sci. 2023, 11, 192–197. [Google Scholar] [CrossRef]
- Angon, P.B.; Anjum, N.; Akter, M.M.; Kc, S.; Suma, R.P.; Jannat, S. An overview of the impact of tillage and cropping system on soil health in agricultural practices. Adv. Agric. 2023, 2023, 8861216. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, M.; Fu, J.; Zhang, X.; Li, Y.; Xing, Y. Effects of drip irrigation on yield, soil fertility and soil enzyme activity of different potato varieties in Northwest China. Front. Plant. Sci. 2023, 14, 1240196. [Google Scholar] [CrossRef] [PubMed]
- Rubio, V.; Diaz-Rossello, R.; Quincke, J.A.; van Es, H.M. Quantifying soil organic carbon’s critical role in cereal productivity losses under annualized crop rotations. Agric. Ecosyst. Environ. 2021, 321, 107607. [Google Scholar] [CrossRef]
- Mehmeti, A.; Pacanoski, Z.; Fetahaj, R.; Kika, A.; Kabashi, B. Weed control in wheat with post-emergence herbicides. Bulg. J. Agric. Sci. 2018, 24, 74–79. [Google Scholar]
- Woźniak, A.; Soroka, M. Efect of crop rotation and tillage system on the weed infestation and yield of spring wheat and on soil properties. App. Ecol. Environ. Res. 2018, 16, 3087–3096. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 2018, 69, 113–125. [Google Scholar] [CrossRef]
- Marini, L.; St-Martin, A.; Vico, G.; Baldoni, G.; Berti, A.; Blecharczyk, A.; Małecka-Jankowiak, I.; Morari, F.; Sawinska, Z.; Bommarco, R. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 2020, 15, 124011. [Google Scholar] [CrossRef]
- Ratke, R.F.; Bertechini, M.C.; De Figueiredo, C.D.; Arauco, A.M.; De Oliviera Dias, B.; De Oliviera, J.C.; Zuffo, A.M.; Oliviera -Paiva, C.A.; Dos Santos-Junior, J.D.; Roque, C.G. Soil organic matter fractions and enzymes activities under no-tillage system: Effects of organomineral and mineral fertilizer with humic substances. Commun. Soil Sci. Plant Anal. 2022, 53, 304–316. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Pulido—Moncada, M.; Lozano, Z.; Delgado, M.; Dumon, M.; van Ranst, E.; Lobo, D.; Gabriels, D.; Cornelis, W.M. Using soil quality organic matter fractions as indicators of soil physical quality. Soil Use Manag. 2018, 34, 187–196. [Google Scholar] [CrossRef]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.J.; Creamer, R.E. Eco-functionality of organic matter in soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Piccolo, A. Humus and Soil Conservation. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1999; pp. 225–264. [Google Scholar]
- Jalli, M.; Huusela, E.; Jalli, H.; Kauppi, K.; Niemi, M.; Himanen, S.; Jauhiainen, L. Effects of crop rotation on spring wheat yield and pest occurrence in different tillage systems: A multi-year experiment in Finish growing conditions. Front. Sustain. Food Syst. 2021, 5, 647335. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Dzieżyc, J. Field water consumption by plants grown on light soils under different water and fertilizer conditions. Zesz. Probl. Post. Nauk. Rol. 1973, 140, 227–241. (In Polish) [Google Scholar]
- Van-Reeuwijk, L. Procedures for Soil Analysis, 3rd ed.; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 1992; 34p. [Google Scholar]
- Dziadowiec, H.; Gonet, S. A methodological guide to soil organic matter research. PTG 1999, 120, 31–33. (In Polish) [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—inorganic forms. In Methods for Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Agronomy Monograph No. 9; ASA and SSSA: Medison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Jakubus, M. The Selected Issues of Soil Science and Agricultural Chemistry; Academic Textbook; Poznan University of Life Sciences: Poznań, Poland, 2021; 136p. (In Polish) [Google Scholar]
- Audette, Y.; Congreves, K.A.; Schneider, K.; Zaro, G.C.; Nunes, A.L.P.; Zhang, H.; Voroney, R.P. The effect of agroecosystems management on the distribution of C functional groups in soil organic matter: A review. Biol. Fertil. Soils 2021, 57, 881–894. [Google Scholar] [CrossRef]
- Maillard, E.; McConkey, B.G.; Luce, M.; Angers, D.A.; Fa, J. Crop rotation, tillage system, and precipitation regime effects on soil carbon stocks over 1 to 30 years in Saskatchewan, Canada. Soil Till. Res. 2018, 177, 97–104. [Google Scholar] [CrossRef]
- Villarino, S.H.; Pinto, P.; Jackson, R.B.; Piñerio, G. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Sci. Adv. 2021, 7, eabd3176. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Zhu, B.; Cheng, W. Root effects on soil organic carbon: A double-edgaed sword. New Phytol. 2021, 230, 60–65. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W. The decomposition of fine and coarse roots: Their global patterns and controlling factors. Sci. Rep. 2015, 5, 09940. [Google Scholar] [CrossRef]
- Torma, S.; Vilček, J.; Lošák, T.; Kužel, S.; Martensson, A. Residual plant nutrients in crop residues-an important resource. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 358–366. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Száková, J.; Pachtrong, V.; Tlustoš, P.; Kulhánek, M.; Černý, J.; Kaul, H.-P.; Wagentristl, H.; Moitzi, G.; Euteneuer, P. Exchangeable and plant -available macronutrients in a long-term tillage and crop rotation experiment after 15 years. Plants 2022, 11, 565. [Google Scholar] [CrossRef] [PubMed]
- Barrow, N.J.; Hartemink, A.E. The effects of pH on nutrient availability depend on both soils and plants. Plant Soil 2023, 487, 21–37. [Google Scholar] [CrossRef]
- Bidnyna, I.; Lykhovyd, P.; Pysarenko, P.; Saidak, R.; Yatsenko, S. Transformation of soil fertility under long-term irrigation with mineralized water. Sci. Horiz. 2025, 28, 73–84. [Google Scholar]
- Farzadfar, S.; Knight, J.D.; Congreves, K.A. Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition. Plant Soil 2021, 462, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, C.F.; Rodrigues, D.R.; da Silva, G.F.; Echer, F.R.; Calonego, J.C. Soil organic carbon stock is improved by cover crops in a tropical sandy soil. Agron. J. 2022, 114, 1546–1556. [Google Scholar] [CrossRef]
- Breus, D.; Skok, S. Spatial modelling of agro-ecological condition of soils in steppe zone of Ukraine. Indian J. Ecol. 2021, 48, 627–633. [Google Scholar]
- Jakubus, M.; Michalak—Oparowska, W. Valorisation of vermicomposts and composts quality using various parameters. Agriculture 2022, 12, 293. [Google Scholar] [CrossRef]
- Eriksen, J.; Jensen, L.S.; Thorup-Kristensen, K.; Magid, J. Towards integrated cover crop management: N, P and S release from aboveground and belowground residues. Agric. Ecosyst. Environ. 2021, 313, 107392. [Google Scholar]
Parameter | Value |
---|---|
pH | 7.3 |
EC | 0.94 mS |
N-NO3 | 1 mg·dm−3 |
P | 1 mg·dm−3 |
K | 12 mg·dm−3 |
Ca | 92 mg·dm−3 |
Mg | 27 mg·dm−3 |
Year of Experiment | CR/% Share of Cereals | Non-Irrigated (N-IR) | Irrigated (IR) | Mean for Crop Rotation |
TOC (g·kg−1) | ||||
1997 | I-50 | 5.67 d | 5.53 d | 5.60 c |
II-75 | 5.81 d | 5.52 d | 5.66 c | |
III-100 | 7.33 c | 7.15 c | 7.23 b | |
Mean for irrigation management | 6.27 c | 6.06 c | ||
2020 | I-50 | 8.19 bc | 7.74 c | 7.97 b |
II-75 | 9.22 b | 8.30 bc | 8.76 a | |
III-100 | 11.22 a | 7.52 c | 9.37 a | |
Mean for irrigation management | 9.55 a | 7.85 b | ||
TN (g·kg−1) | ||||
1997 | I-50 | 0.60 e | 0.66 bc | 0.63 cd |
II-75 | 0.60 e | 0.60 e | 0.60 d | |
III-100 | 0.72 a | 0.71 ab | 0.71 a | |
Mean for irrigation management | 0.64 b | 0.66 ab | ||
2020 | I-50 | 0.67 abc | 0.62 de | 0.65 c |
II-75 | 0.67 bc | 0.64 cd | 0.66 bc | |
III-100 | 0.68 ab | 0.68 ab | 0.68 ab | |
Mean for irrigation management | 0.67 a | 0.65 ab | ||
HSC (mg·kg−1) | ||||
1997 | I-50 | 1782.5 a | 1480.0 d | 1631.25 a |
II-75 | 1735.5 a | 1486.25 cd | 1610.88 a | |
III-100 | 1689.25 ab | 1435.0 de | 1562.13 a | |
Mean for irrigation management | 1735.75 a | 1467.08 c | ||
2020 | I-50 | 1446.25 d | 1341.25 ef | 1393.75 b |
II-75 | 1586.25 bc | 1278.75 f | 1432.50 b | |
III-100 | 1597.50 bc | 1321.25 e | 1459.38 b | |
Mean for irrigation management | 1543.33 b | 1313.75 d | ||
Q4/6 | ||||
1997 | I-50 | 3.96 cd | 5.29 ab | 4.62 bc |
II-75 | 3.93 cd | 5.37 a | 4.65 b | |
III-100 | 4.63 bc | 5.78 a | 5.20 a | |
Mean for irrigation management | 4.17 b | 5.48 a | ||
2020 | I-50 | 3.54 de | 4.16 cd | 3.85 d |
II-75 | 3.07 e | 3.62 de | 3.34 e | |
III-100 | 3.12 e | 5.38 a | 4.25 c | |
Mean for irrigation management | 3.24 c | 4.39 b |
Year of Experiment | CR/% Share of Cereals | Non-Irrigated (N-IR) | Irrigated (IR) | Mean for Crop Rotation |
AN | ||||
1997 | I-50 | 18.00 a | 14.99 a | 16.48 a |
II-75 | 15.71 a | 13.08 a | 14.39 a | |
III-100 | 18.39 a | 11.94 a | 15.17 a | |
Mean for irrigation management | 17.35 a | 13.34 a | ||
2020 | I-50 | 19.91 a | 14.03 a | 17.0 a |
II-75 | 18.82 a | 11.81 a | 15.31 a | |
III-100 | 18.75 a | 14.38 a | 16.56 a | |
Mean for irrigation management | 19.16 a | 13.41 a | ||
AP | ||||
1997 | I-50 | 121.20 f | 132.57 e | 126.89 e |
II-75 | 137.0 e | 151.17 d | 144.10 d | |
III-100 | 157.68 d | 164.20 c | 160.94 c | |
Mean for irrigation management | 138.62 d | 149.32 c | ||
2020 | I-50 | 163.25 c | 200.92 ab | 182.10 b |
II-75 | 170.10 c | 189.84 b | 180.0 b | |
III-100 | 189.73 b | 207.88 a | 198.81 a | |
Mean for irrigation management | 174.35 b | 199.55 a | ||
AK | ||||
1997 | I-50 | 122.47 a | 115.25 a | 118.86 b |
II-75 | 126.88 a | 113.25 a | 120.06 b | |
III-100 | 197.25 a | 157.58 a | 177.40 a | |
Mean for irrigation management | 148.87 bc | 128.7 c | ||
2020 | I-50 | 192.69 a | 152.64 a | 172.67 a |
II-75 | 221.18 a | 164.57 a | 192.87 a | |
III-100 | 198.84 a | 166.25 a | 182.55 a | |
Mean for irrigation management | 201.57 a | 161.15 b | ||
AMg | ||||
1997 | I-50 | 59.25 d | 72.50 b | 65.88 cd |
II-75 | 49.75 e | 71.50 bc | 60.63 d | |
III-100 | 69.0 bc | 71.05 bc | 70.03 bc | |
Mean for irrigation management | 59.3 c | 71.68 a | ||
2020 | I-50 | 70.79 bc | 67.30 bc | 69.04 bc |
II-75 | 70.85 bc | 64.47 cd | 67.66 bc | |
III-100 | 71.97 b | 82.25 a | 77.11 a | |
Mean for irrigation management | 71.21 b | 71.34 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubus, M.; Panasiewicz, K. Quantitative Changes in Selected Soil Health Indices as a Result of Long-Term (23-Year) Cultivation of Winter Wheat in Various Crop Rotations: Case Study for Sandy Soil. Agriculture 2025, 15, 1456. https://doi.org/10.3390/agriculture15131456
Jakubus M, Panasiewicz K. Quantitative Changes in Selected Soil Health Indices as a Result of Long-Term (23-Year) Cultivation of Winter Wheat in Various Crop Rotations: Case Study for Sandy Soil. Agriculture. 2025; 15(13):1456. https://doi.org/10.3390/agriculture15131456
Chicago/Turabian StyleJakubus, Monika, and Katarzyna Panasiewicz. 2025. "Quantitative Changes in Selected Soil Health Indices as a Result of Long-Term (23-Year) Cultivation of Winter Wheat in Various Crop Rotations: Case Study for Sandy Soil" Agriculture 15, no. 13: 1456. https://doi.org/10.3390/agriculture15131456
APA StyleJakubus, M., & Panasiewicz, K. (2025). Quantitative Changes in Selected Soil Health Indices as a Result of Long-Term (23-Year) Cultivation of Winter Wheat in Various Crop Rotations: Case Study for Sandy Soil. Agriculture, 15(13), 1456. https://doi.org/10.3390/agriculture15131456