Assessment of Climate Adaptability in the Late-Maturing Citrus Industry in Sichuan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Sources of Data
2.3. Research Methodology
2.3.1. Resource Endowment Coefficient
2.3.2. Climate Suitability Classification
Analysis of Climatic Conditions Suitable for the Growth of Late-Maturing Citrus Fruits
Classification of Climate Adaptability for Late-Maturing Citrus Industry
2.3.3. DEA–Malmquist
3. Results
3.1. The in the Late-Maturing Citrus Industry in Sichuan Province
3.2. The Climatic Suitability Levels for Late-Maturing Citrus Production in Various Prefecture-Level Cities and Autonomous Prefectures in Sichuan Province
3.3. The Average and Decomposition of the Climate Adaptability Index for the Late-Maturing Citrus Industry in Prefecture-Level Cities and Autonomous Prefectures in Sichuan Province
3.4. The Temporal Variation in the Climate Adaptability Index for the Late-Maturing Citrus Industry in Prefecture-Level Cities and Autonomous Prefectures in Sichuan Province
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Tang, J.-Y.; Quan, J.-Y.; Chen, Z.; Huang, Y.; Li, J.; Lei, B. Current Development Situation and Countermeasures of Tarocco Blood Orange Industry in Sichuan Province. South. Hortic. 2019, 30, 20–23. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, M.; Zhang, X. Analysis of Major Effective Components in the Peel of “Shiranuki” Citrus Fruits Cultivated in Sichuan Province. South China Agric. 2021, 15, 20–23+32. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of citrus (Citrus spp.): A review. Exp. Agric. 2012, 48, 347–377. [Google Scholar] [CrossRef]
- Fares, A.; Bayabil, H.K.; Zekri, M.; Mattos, D., Jr.; Awal, R. Potential climate change impacts on citrus water requirement across major producing areas in the world. J. Water Clim. Chang. 2017, 8, 576–592. [Google Scholar] [CrossRef]
- Shirgure, P.S. Research review on irrigation scheduling and water requirement in citrus. Sci. J. Rev. 2013, 2, 113–121. [Google Scholar]
- Shirgure, P.S.; Srivastava, A.K.; Singh, S. Water management in citrus—A review. Agric. Rev. 2000, 21, 223–230. [Google Scholar]
- Sharma, N.; Sharma, S.; Niwas, R. Thermal time and phenology of citrus in semi-arid conditions. J. Pharmacogn. Phytochem. 2017, 6, 27–30. [Google Scholar]
- Borna, R.; Alizadeh, A. Agroclimatic zoning of citrus cultivation in Khuzestan province using AHP method. J. Agric. Meteorol. 2016, 4, 12–21. [Google Scholar]
- Cleves-Leguízamo, J.A.; Jarma-Orozco, A. Characterization and typification of citrus production systems in the department of Meta. Agron. Colomb. 2014, 32, 113–121. [Google Scholar] [CrossRef]
- Pereira, M.S.; da Silva, T.J.A.; e Silva, Ê.F.D.F.; Bonfim-Silva, E.M.; Schlichting, A.F.; Mazzini-Guedes, R.B. Agro-climatic zoning for citriculture in the Agreste region of Pernambuco State, Brazil. Afr. J. Agric. Res. 2015, 10, 2506–2515. [Google Scholar]
- Shen, Z. Regionalization of Citrus in China and Good Citrus Varieties; Agricultural Press: Beijing, China, 1988. [Google Scholar]
- Liu, C.; Li, K.; Zhang, J.; Yang, Y.; Wei, S.; Wang, C. Refined Climatic Zoning for Citrus Cultivation in Southern China Based on Climate Suitability. J. Applied Meteorological Science 2021, 32, 421–431. [Google Scholar] [CrossRef]
- Deng, L.; Jiang, D.-F.; Li, Y.-Y.; Dong, Z.-Z.; Tan, S.-Q. Research on Evaluation Model of Citrus Climate Quality in Hunan Province Based on Meteorological Factors: A Case Study of Dongkou Orange. Acta Agric. Jiangxi 2022, 34, 184–189. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, B.; Li, Q.; Liao, L.; Deng, H.; Deng, Q.; Yu, D.; Zhu, J.; Wang, Z. Analyzing and Zoning of Eco-climate Suitability of Late-maturing Citrus in Sichuan. Chin. Agric. Sci. Bull. 2021, 37, 94–101. [Google Scholar] [CrossRef]
- Shen, Z. The current industrial status and demonstrative leading role of the top 30 citrus-producing counties and districts in China. Friend Peasant. Farmer 2019, 1–4. [Google Scholar] [CrossRef]
- Xu, P. A Literature Review on the Study of Innate Advantage Theory. Mod. Bus. Trade Ind. 2009, 21, 111–112. [Google Scholar] [CrossRef]
- Hong, M. Developmental Trajectory of the H-O Theory. Contemp. Econ. 2013, 126–127. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, C.; Liu, Y.; He, P.; Liao, G.; Gao, W.; Cao, J.; Shao, Z. Spatial and temporal evolution and driving mechanism of citrus production area in Sichuan. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 58–69. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Liang, J. Effect of the Regional Resource Endowment on Resource Utilization Efficiency. J. Nat. Resour. 2010, 25, 1237–1247. [Google Scholar] [CrossRef]
- Deng, X. Thoughts on the development of China’s fruit industry. J. Fruit Sci. 2021, 38, 121–127. [Google Scholar] [CrossRef]
- Huang, W.; Qi, C. Studies on the Spatio-temporal Variation and the Driving Forces of Citrus Production in China. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2022, 90–103. [Google Scholar] [CrossRef]
- Xiang, Y.; Liang, X.; Lu, Q. Comparative Advantages and Influencing Factors of Citrus Production in Guangxi: An Empirical Analysis Based on the Data of 29 Major Citrus Producing Counties/Districts. Chin. J. Trop. Nano CoO-Cu-MgO Catal. Vap. Phase Simultaneous Synth. 2020, 40, 126–134. [Google Scholar] [CrossRef]
- Tang, D.; Mao, Y. Advantages, Problems and Countermeasures for Late-maturing Citrus Fruits Development in Fuling District, Chongqing City. South China Agric. 2016, 10, 64–66. [Google Scholar] [CrossRef]
- Qiang, Q.; Jian, C. Natural resource endowment, institutional quality and China’s regional economic growth. Resour. Policy 2020, 66, 101644. [Google Scholar] [CrossRef]
- Narayanan, E.; Ismail, W.R.; Mustafa, Z. A data-envelopment analysis-based systematic review of the literature on innovation performance. Heliyon 2022, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Danish, M.S.; Sharma, R. Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis. Energy Econ. 2019, 81, 454–464. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Kabirifar, K.; Yazdani, R.; Asgari Gashteroodkhani, T. A novel artificial intelligent approach: Comparison of machine learning tools and algorithms based on optimization DEA Malmquist productivity index for eco-efficiency evaluation. Int. J. Energy Sect. Manag. 2021, 15, 523–550. [Google Scholar] [CrossRef]
- Tachega, M.A.; Yao, X.; Liu, Y.; Ahmed, D.; Li, H.; Mintah, C. Energy efficiency evaluation of oil producing economies in Africa:DEA, malmquist and multiple regression approaches. Clean. Environ. Syst. 2021, 2, 100025. [Google Scholar] [CrossRef]
- Tengey, C.; Nwulu, N.I.; Adepoju, O.; Longe, O.M. Analysis of the Productivity Dynamics of Electricity Distribution Regions in Ghana. Energies 2022, 15, 9414. [Google Scholar] [CrossRef]
- Andrews, A. An application of PCA-DEA with the double-bootstrap approach to estimate the technical efficiency of New Zealand District Health Boards. Health Econ. Policy Law 2022, 17, 175–199. [Google Scholar] [CrossRef]
- Zhang, H.; Nisar, U.; Mu, Y. Evaluation of Technical Efficiency in Exotic Carp Polyculture in Northern India: Conventional DEA vs. Bootstrapping Methods. Fishes 2022, 7, 168. [Google Scholar] [CrossRef]
- Lin, Z.-Y.; Deng, L.-J.; Chen, Q.; Chen, C.-Y.; Liu, Y.-L.; Chen, Z. Analysis on Change of Citrus Production Patterns and Driving Factors in Sichuan Province. Southwest China J. Agric. Sci. 2020, 33, 2591–2604. [Google Scholar] [CrossRef]
- Zhu, D.; Ge, C.; Zhu, F. Spatial-temporal analysis of the comparative advantage of vegetable production in Jiangsu province. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 101–108. [Google Scholar] [CrossRef]
- Ma, H. On the Regional Differences of the Comparative Advantages and the Export Competitiveness of Cotton in China. Int. Trade Issues 2007, 61–65. [Google Scholar] [CrossRef]
- Zhu, F. Examining the Economic Perspective of Jiangsu’s Vegetable Industry Layout. Veg. Yangtze River 2018, 22–23. [Google Scholar] [CrossRef]
- Hu, Y.; Qi, C. Empirical Study on Dynamic Evolution and its Influencing Factors of International Competitiveness of China’s Citrus Industry. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2013, 33–38. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.-G.; Zhang, H.-L.; Chen, F. The Possible Effects of Global Warming on Cropping Systems in China VII. The Possible Effects of Climate Warming on Geographical Shift in Northern Limit of Citrus Planting Areas and the Risk Analysis of Freezing Injury in China. Sci. Agric. Sin. 2011, 44, 2876–2885. [Google Scholar] [CrossRef]
- Song, H. Be Aware of Abnormal High Temperatures Causing Citrus Fruit Drop. Friend Farmer 2015, 25. [Google Scholar] [CrossRef]
- Ye, H.; Wu, H.; Cao, Y. Climate Adaptability and Cultivation Zoning of Tengen Tangerine in Western Zhejiang. J. Zhejiang Agric. Sci. 2012, 1180–1182. [Google Scholar] [CrossRef]
- Sun, X.-W.; Tang, D.; Li, F.; Long, G.-Y.; Deng, Z.-N.; Li, N. Effects of Main Meteorological Factors on Fruit Quality of Bingtang Sweet Orange. Hunan Agric. Sci. 2015, 5, 77–80. [Google Scholar] [CrossRef]
- Liu, W.; Mo, J.Y.; Li, Z.; Wang, J.D.; Zheng, C.W.; Zhang, L. Climate Suitability Model of Citrus in Guangxi. Chin. Agric. Sci. Bull. 2021, 37, 109–114. Available online: http://www.casb.org (accessed on 15 December 2023).
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tu, W.; Liu, Q.P. Study on the relationship between tourism carbon emission and carbon carrying capacity in East China. Ecol. Econ. 2021, 37, 144–149. Available online: https://kns.cnki.net/kcms2/article/abstract?v=HR7ide6_o4RC1H4cHSE2GHByAW6qGkHea8qj1KsAoy58rXFCbV2fmIUqTrmT3ulyTC-HVq9w_9eh_uy4cBFi09IpfBd6RSRAmuwDvQvdBkkk2v_5CcjmH-u5lk896Poa5Yiq9LP88tUvzo07XOoPdA==&uniplatform=NZKPT&language=CHS (accessed on 15 December 2023).
- Liu, C.; Yang, H. Dynamic efficiency analysis of medical insurance fund for urban and rural residents based on DEA -Malmquist index method and rank -sum ratio method. China Med. Her. 2024, 21, 187–191. [Google Scholar] [CrossRef]
- Xu, P.; Huang, Z. Study on industrial water use efficiency based on three-stage DEA-Malmquist index decomposition. Water Resour. Power 2022, 40, 89–93. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Yazdani, R.; Shadkam, E.; Tavassoli, L.S.; Massah, R. VCS and CVS: New combined parametric and nonparametric operation research models. Sustain. Oper. Comput. 2021, 2, 36–56. [Google Scholar] [CrossRef]
- Yu, H.; Chen, W. Evaluation of Sustainable Development Policy of Sichuan Citrus Industry in China Based on DEA–Malmquist Index and DID Model. Sustainability 2023, 15, 4260. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, X. An empirical analysis of ecological efficiency evaluation and influencing factors of forestry in China under the background of green development:Based on DEA analysis perspective. J. Cent. South Univ. For. Technol. 2020, 40, 149–158. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, C.; Liu, Y.; Liu, G.; He, P.; Liao, G.; Gao, W.; Cao, J.; Shao, Z. Spatial Simulation of Citrus Production Based on Appropriate Probability Model. Res. Agric. Mod. 2022, 43, 726–737. [Google Scholar] [CrossRef]
- Pu, C.; Yang, G.; Zhang, J. Investigation and Analysis of Post-harvest Diseases in Late-maturing Citrus Fruits in Nanchong, Sichuan, China. Chin. J. Fruit Trees 2023, 120–123. [Google Scholar] [CrossRef]
- Deng, X. A 60-Year Review and Outlook of Citrus Breeding in China. J. Hortic. Sci. 2022, 49, 2063–2074. [Google Scholar] [CrossRef]
- Zhong, R.; Song, Z.; Lu, Y. Analysis of the Development Dilemmas and Countermeasures of Sichuan Citrus Industry. Shanxi Agric. Econ. 2023, 166–168. [Google Scholar] [CrossRef]
- Yang, H.; Wu, X.-Y.; Quan, J.-Y.; Chen, Z.; Tang, J.-Y. Current Situation and Development Countermeasures of Citrus Industry in Sichuan Province. Southeast Hortic. 2021, 9, 55–60. [Google Scholar] [CrossRef]
Variable | The Most Suitable | Suitable | Sub-Suitable | Unsuitable |
---|---|---|---|---|
Average annual temperature/°C | (16.5,17.5] | (15.5,16.5] or (17.5,18.5] | (13,15.5] or (18.5,21] | (-∞,13] or (21,+∞) |
Accumulated temperature ≥ 10 °C/°C | (5500,6000] | (5000,5500] or (6000,6500] | (4500,5000] or (6500,7000] | (-∞,4500] or (7000,+∞) |
Average July temperature/°C | (25.5,27] | (24,25.5] or (27,28] | (21,24] or (28,30] | (-∞,21] or (30,+∞) |
Average January temperature/°C | (5,7] | (3,5] or (7,9] | (−2,3] or (9,12] | (-∞,−2] or (12,+∞) |
Annual precipitation/mm | (900,1100] | (800,900] or (1100,1300] | (700,800] or (1300,1500] | (-∞,700] or (1500,+∞) |
Annual sunshine hours/h | (1000,1200] | (900,1000] or (1200,1500] | (800,900] or (1500,1800] | (-∞,800] or (1800,+∞) |
Type of Indicator | Content of Indicator |
---|---|
Indicator of output | |
Index of inputs | Grade score for annual average temperature suitability |
Suitable grade score of accumulated temperature ≥ 10 °C | |
Rating score for July’s average temperature suitability | |
Rating score for January’s average temperature suitability | |
Requisite grade score for annual precipitation | |
Appropriate grading criteria for annual sunshine hours |
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Index Fluctuations | Years with EFit > 1 | Mean Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chengdu | 1.16 | 1.18 | 1.15 | 1.22 | 1.22 | 1.22 | 1.12 | 1.37 | 1.18 | 1.16 | 1.24 | ↑ | 11 | 1.20 |
Zigong | 1.56 | 1.55 | 1.57 | 1.57 | 1.60 | 1.61 | 1.61 | 1.73 | 1.66 | 1.49 | 1.56 | = | 11 | 1.59 |
Luzhou | 0.39 | 0.38 | 0.41 | 0.44 | 0.47 | 0.49 | 0.50 | 0.50 | 0.50 | 0.51 | 0.52 | ↑ | 0 | 0.46 |
Deyang | 0.31 | 0.31 | 0.28 | 0.32 | 0.31 | 0.31 | 0.30 | 0.25 | 0.24 | 0.27 | 0.26 | ↓ | 0 | 0.29 |
Mianyang | 0.48 | 0.46 | 0.45 | 0.41 | 0.43 | 0.42 | 0.40 | 0.23 | 0.23 | 0.26 | 0.25 | ↓ | 0 | 0.37 |
Guangyuan | 0.76 | 0.81 | 0.78 | 0.83 | 0.82 | 0.81 | 0.76 | 0.63 | 0.63 | 0.51 | 0.25 | ↓ | 0 | 0.69 |
Suining | 0.27 | 0.25 | 0.25 | 0.29 | 0.28 | 0.30 | 0.28 | 0.28 | 0.31 | 0.30 | 0.28 | ↑ | 0 | 0.28 |
Neijiang | 1.58 | 1.49 | 1.40 | 1.46 | 1.44 | 1.46 | 1.39 | 1.43 | 1.43 | 1.49 | 1.56 | ↓ | 11 | 1.47 |
Leshan | 0.65 | 0.67 | 0.65 | 0.64 | 0.60 | 0.56 | 0.52 | 0.54 | 0.55 | 0.45 | 0.47 | ↓ | 0 | 0.57 |
Nanchong | 1.47 | 1.44 | 1.36 | 1.33 | 1.30 | 1.25 | 1.20 | 1.06 | 1.06 | 1.15 | 1.16 | ↓ | 11 | 1.25 |
Meishan | 3.52 | 3.51 | 3.38 | 3.40 | 3.56 | 3.56 | 3.66 | 4.07 | 4.05 | 4.32 | 4.44 | ↑ | 11 | 3.77 |
Yibin | 1.51 | 1.45 | 1.48 | 1.47 | 1.43 | 1.43 | 1.37 | 1.18 | 1.29 | 1.29 | 1.24 | ↓ | 11 | 1.38 |
Guangan | 1.01 | 1.04 | 1.02 | 1.00 | 1.00 | 0.96 | 0.93 | 0.82 | 0.81 | 0.78 | 0.76 | ↓ | 3 | 0.92 |
Dazhou | 0.82 | 0.80 | 0.80 | 0.78 | 0.75 | 0.74 | 0.73 | 0.67 | 0.66 | 0.70 | 0.71 | ↓ | 0 | 0.74 |
Yaan | 0.35 | 0.36 | 0.46 | 0.57 | 0.62 | 0.72 | 0.71 | 0.75 | 0.79 | 0.64 | 0.65 | ↑ | 0 | 0.60 |
Bazhong | 0.22 | 0.25 | 0.25 | 0.31 | 0.30 | 0.29 | 0.28 | 0.28 | 0.27 | 0.24 | 0.25 | ↑ | 0 | 0.27 |
Ziyang | 2.08 | 1.99 | 2.13 | 1.75 | 1.89 | 2.00 | 3.34 | 3.26 | 3.67 | 4.89 | 4.84 | ↑ | 11 | 2.89 |
Liangshan | 0.09 | 0.09 | 0.10 | 0.10 | 0.11 | 0.10 | 0.10 | 0.11 | 0.12 | 0.12 | 0.13 | ↑ | 0 | 0.11 |
Grade Score for Annual Average Temperature Suitability | Suitable Grade Score of Accumulated Temperature ≥ 10 °C | Rating Score for July’s Average Temperature Suitability | Rating Score for January’s Average Temperature Suitability | Requisite Grade Score for Annual Precipitation | Appropriate Grading Criteria for Annual Sunshine Hours | Optimum Grade Number | Suitable Grade Number | Sub-Suitable Grade Number | Unsuitable Grade Number | |
---|---|---|---|---|---|---|---|---|---|---|
Chengdu | 5 | 4 | 4 | 5 | 4 | 4 | 2 | 4 | 0 | 0 |
Zigong | 3 | 4 | 4 | 4 | 4 | 4 | 0 | 5 | 1 | 0 |
Luzhou | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 6 | 0 | 0 |
Deyang | 5 | 5 | 5 | 4 | 4 | 4 | 3 | 3 | 0 | 0 |
Mianyang | 5 | 5 | 5 | 4 | 4 | 4 | 3 | 3 | 0 | 0 |
Guangyuan | 4 | 4 | 5 | 5 | 4 | 4 | 2 | 4 | 0 | 0 |
Suining | 4 | 4 | 4 | 5 | 4 | 4 | 1 | 5 | 0 | 0 |
Neijiang | 4 | 5 | 4 | 4 | 4 | 4 | 1 | 5 | 0 | 0 |
Leshan | 4 | 4 | 5 | 4 | 3 | 4 | 1 | 4 | 1 | 0 |
Nanchong | 4 | 5 | 4 | 4 | 5 | 4 | 2 | 4 | 0 | 0 |
Meishan | 4 | 5 | 5 | 4 | 4 | 4 | 2 | 4 | 0 | 0 |
Yibin | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 6 | 0 | 0 |
Guangan | 4 | 5 | 4 | 5 | 4 | 4 | 2 | 4 | 0 | 0 |
Dazhou | 4 | 5 | 3 | 5 | 4 | 5 | 3 | 2 | 1 | 0 |
Yaan | 5 | 4 | 4 | 4 | 2 | 3 | 1 | 3 | 1 | 1 |
Bazhong | 4 | 5 | 4 | 5 | 4 | 3 | 2 | 3 | 1 | 0 |
Ziyang | 4 | 5 | 4 | 4 | 4 | 4 | 1 | 5 | 0 | 0 |
Liangshan | 4 | 4 | 3 | 3 | 4 | 2 | 0 | 3 | 2 | 1 |
Effch | Tech | Pech | Sech | TFP | |
---|---|---|---|---|---|
Chengdu | 0.930 | 0.995 | 0.969 | 0.960 | 0.925 |
Zigong | 0.930 | 1.027 | 1.000 | 0.930 | 0.956 |
Luzhou | 1.012 | 1.026 | 1.149 | 0.881 | 1.038 |
Deyang | 0.933 | 0.987 | 0.859 | 1.086 | 0.920 |
Mianyang | 0.907 | 1.015 | 0.906 | 1.002 | 0.921 |
Guangyuan | 0.892 | 1.030 | 1.075 | 0.830 | 0.919 |
Suining | 0.972 | 1.022 | 0.970 | 1.002 | 0.994 |
Neijiang | 0.974 | 1.051 | 1.000 | 0.974 | 1.023 |
Leshan | 0.963 | 1.020 | 1.080 | 0.892 | 0.983 |
Nanchong | 0.919 | 1.039 | 0.954 | 0.963 | 0.955 |
Meishan | 1.000 | 1.004 | 1.000 | 1.000 | 1.004 |
Yibin | 0.998 | 1.020 | 1.003 | 0.994 | 1.018 |
Guangan | 0.895 | 1.044 | 0.831 | 1.077 | 0.934 |
Dazhou | 0.907 | 1.037 | 0.875 | 1.037 | 0.941 |
Yaan | 1.017 | 1.054 | 1.000 | 1.017 | 1.071 |
Bazhong | 1.052 | 0.985 | 1.196 | 0.879 | 1.036 |
Ziyang | 1.054 | 1.097 | 1.054 | 1.000 | 1.156 |
Liangshan | 1.028 | 1.025 | 1.000 | 1.028 | 1.054 |
mean | 0.964 | 1.026 | 0.991 | 0.973 | 0.990 |
2010– 2011 | 2011– 2012 | 2012– 2013 | 2013– 2014 | 2014– 2015 | 2015– 2016 | 2016– 2017 | 2017– 2018 | 2018– 2019 | 2019– 2020 | |
---|---|---|---|---|---|---|---|---|---|---|
Chengdu | 0.678 | 1.462 | 0.707 | 0.866 | 0.866 | 0.734 | 1.529 | 0.730 | 1.243 | 0.859 |
Zigong | 0.962 | 0.697 | 1.118 | 1.019 | 1.006 | 1.000 | 0.961 | 0.960 | 0.803 | 1.114 |
Luzhou | 1.125 | 1.114 | 1.073 | 1.068 | 0.834 | 1.068 | 1.056 | 0.930 | 0.814 | 1.419 |
Deyang | 1.118 | 1.173 | 0.571 | 0.866 | 1.491 | 0.726 | 0.860 | 1.175 | 0.874 | 0.703 |
Mianyang | 1.022 | 0.947 | 0.683 | 1.049 | 1.302 | 1.429 | 0.420 | 0.885 | 1.063 | 0.863 |
Guangyuan | 1.137 | 0.807 | 1.190 | 0.988 | 0.988 | 1.171 | 0.734 | 1.000 | 0.810 | 0.580 |
Suining | 0.926 | 1.067 | 1.297 | 0.836 | 0.928 | 1.165 | 1.038 | 1.031 | 0.649 | 1.167 |
Neijiang | 1.461 | 0.647 | 1.166 | 0.854 | 0.878 | 0.891 | 1.626 | 0.775 | 1.087 | 1.249 |
Leshan | 1.031 | 1.120 | 0.881 | 0.786 | 1.244 | 0.929 | 0.929 | 1.024 | 0.610 | 1.567 |
Nanchong | 0.735 | 0.944 | 1.304 | 0.977 | 0.962 | 0.960 | 0.914 | 0.966 | 0.728 | 1.208 |
Meishan | 1.287 | 0.746 | 1.006 | 1.209 | 0.866 | 1.028 | 1.344 | 0.828 | 1.264 | 0.713 |
Yibin | 1.395 | 0.703 | 1.110 | 0.842 | 1.155 | 0.958 | 0.770 | 0.849 | 1.064 | 1.687 |
Guangan | 0.772 | 0.981 | 1.307 | 1.500 | 0.429 | 1.352 | 0.947 | 0.920 | 0.646 | 1.037 |
Dazhou | 0.845 | 0.866 | 1.300 | 1.442 | 0.493 | 1.232 | 0.881 | 1.376 | 0.530 | 1.014 |
Yaan | 1.029 | 1.475 | 1.239 | 1.088 | 0.774 | 1.479 | 0.901 | 1.071 | 0.944 | 0.930 |
Bazhong | 1.174 | 0.866 | 1.479 | 1.117 | 0.837 | 1.115 | 1.000 | 0.964 | 1.013 | 0.928 |
Ziyang | 1.070 | 0.957 | 1.225 | 0.935 | 1.262 | 1.693 | 1.380 | 0.916 | 1.362 | 0.990 |
Liangshan | 1.118 | 0.994 | 1.000 | 1.160 | 0.909 | 1.000 | 1.351 | 0.909 | 1.325 | 0.885 |
mean | 1.028 | 0.951 | 1.061 | 1.017 | 0.918 | 1.081 | 0.991 | 0.952 | 0.901 | 1.013 |
Year | TFP Mean | Prefectures and Autonomous Regions with TFP below the Mean | Frequency Statistics |
---|---|---|---|
2010–2011 | 1.028 | Chengdu, Zigong, Mianyang, Suining, Nanchong, Guangan, Dazhou | 7 times (Chengdu); 6 times (Mianyang, Nanchong, Meishan, Deyang); 5 times (Zigong, Guangan, Dazhou, Guangyuan, Neijiang, Leshan, Liangshan); 4 times (Suining, Yibin, Luzhou); 3 times (Bazhong, Ziyang, Yaan) |
2011–2012 | 0.951 | Zigong, Mianyang, Guangyuan, Neijiang, Nanchong, Meishan, Yibin, Suining, Dazhou, Bazhong | |
2012–2013 | 1.061 | Chengdu, Deyang, Mianyang, Leshan, Meishan, Liangshan | |
2013–2014 | 1.017 | Chengdu, Deyang, Guangyuan, Suining, Neijiang, Leshan, Nanchong, Yibin, Ziyang | |
2014–2015 | 0.918 | Chengdu, Luzhou, Neijiang, Meishan, Guangan, Dazhou, Yaan, Bazhong, Liangshan | |
2015–2016 | 1.081 | Chengdu, Zigong, Luzhou, Deyang, Neijiang, Leshan, Nanchong, Meishan, Yibin, Liangshan | |
2016–2017 | 0.991 | Zigong, Deyang, Mianyang, Guangyuan, Leshan, Nanchong, Yibin, Guangan, Dazhou, Yaan | |
2017–2018 | 0.952 | Chengdu, Luzhou, Mianyang, Neijiang, Meishan, Yibin, Guangan, Ziyang, Liangshan | |
2018–2019 | 0.901 | Zigong, Luzhou, Deyang, Guangyuan, Suining, Leshan, Nanchong, Guangan, Dazhou | |
2019–2020 | 1.013 | Chengdu, Deyang, Mianyang, Guangyuan, Meishan, Yaan, Bazhong, Ziyang, Liangshan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y. Assessment of Climate Adaptability in the Late-Maturing Citrus Industry in Sichuan Province. Agriculture 2024, 14, 1101. https://doi.org/10.3390/agriculture14071101
He Y. Assessment of Climate Adaptability in the Late-Maturing Citrus Industry in Sichuan Province. Agriculture. 2024; 14(7):1101. https://doi.org/10.3390/agriculture14071101
Chicago/Turabian StyleHe, Yu. 2024. "Assessment of Climate Adaptability in the Late-Maturing Citrus Industry in Sichuan Province" Agriculture 14, no. 7: 1101. https://doi.org/10.3390/agriculture14071101
APA StyleHe, Y. (2024). Assessment of Climate Adaptability in the Late-Maturing Citrus Industry in Sichuan Province. Agriculture, 14(7), 1101. https://doi.org/10.3390/agriculture14071101