Ground Management Through Grazing in Rainfed Olive Orchards Provides High Olive Yields and Has Other Potential Benefits for Both the Soil and the Farmer
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Conditions
2.2. Treatments and Field Plot Management
2.3. Leaf and Soil Sampling and Crop Harvest
2.4. Pot Experiment
2.5. Laboratory Analyses
2.6. Data Analysis
3. Results
3.1. Olive Yield and Alternate Bearing Cycles
3.2. Tree Nutritional Status
3.3. Soil Properties and Tissue Nutrient Concentration of Potted Ryegrass
4. Discussion
4.1. Sheep Grazing Gave the Same Olive Yield as Herbicide and Tillage Treatments
4.2. The Alternate Bearing Habit of Olive
4.3. The Nitrogen Nutritional Status of Tree Plants Increased with Herbicide Application
4.4. The Pool of Soil Organic Carbon and Some Nutrients Varied with the Treatments
4.5. Soil Tillage Reduced Potentially Available Soil Nitrogen
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Di Prima, S.; Rodrigo-comino, J.; Novara, A.; Iovino, M.; Pirastru, M.; Keesstra, S.; Cerdà, A. Soil physical quality of citrus orchards under tillage, herbicide, and organic managements. Pedosphere 2018, 28, 463–477. [Google Scholar] [CrossRef]
- Mia, M.J.; Massetani, F.; Murri, G.; Neri, D. Sustainable alternatives to chemicals for weed control in the orchard: A Review. Hort. Sci. 2020, 47, 1–12. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture: A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Morugan-Coronado, A.; Linares, C.; Dolores, G.M.; Faz, A.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Arrobas, M. Cover cropping for increasing fruit production and farming sustainability. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–295. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Ordóñez-Fernández, R.; Giráldez, J.V.; Márquez-García, J.; Laguna, A.; Carbonell-Bojollo, R. Efficiency of four different seeded plants and native vegetation as cover crops in the control of soil and carbon losses by water erosion in olive orchards. Land Degrad. Dev. 2018, 29, 2278–2290. [Google Scholar] [CrossRef]
- Ferreira, I.Q.; Arrobas, M.; Claro, A.M.; Rodrigues, M.A. Soil management in rainfed olive orchards may result in conflicting effects on olive production and soil fertility. Span. J. Agric. Res. 2013, 11, 472–480. [Google Scholar] [CrossRef]
- Alcántara, C.; Soriano, M.A.; Saavedra, M.; Gómez, J.A. Sistemas de manejo del suelo. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2017; pp. 335–417. [Google Scholar]
- Sánchez-Moreno, S.; Castro, J.; Alonso-Prados, E.; Alonso-Prados, J.; García-Baudín, J.; Talavera, M.; Durán-Zuazo, V. Tillage and herbicide decrease soil biodiversity in olive orchards. Agron. Sustain. Dev. 2015, 35, 691–700. [Google Scholar] [CrossRef]
- Bokszczanin, K.Ł.; Wrona, D.; Przybyłko, S. Influence of an alternative soil management system to herbicide use on tree vigor, yield, and quality of apple fruit. Agronomy 2021, 11, 58. [Google Scholar] [CrossRef]
- Giese, G.; Velasco-Cruz, C.; Roberts, L.; Heitman, J.; Wolf, T.K. Complete vineyard floor cover crops favorably limit grapevine vegetative growth. Sci. Hortic. 2014, 170, 256–266. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Lopes, J.I.; Pavão, F.M.; Cabanas, J.E.; Arrobas, M. Effect of soil management on olive yield and nutritional status of trees in rainfed orchards. Common. Soil Sci. Plant Anal. 2011, 42, 993–2011. [Google Scholar] [CrossRef]
- Agromanual. Agromanual Online. O Portal do Agromanual. 2024. Available online: https://agromanual.pt/ (accessed on 12 January 2024).
- Calero, J.; García-Ruiz, R.; Torrús-Castillo, M.; Vicente-Vicente, J.L.; Martín-García, J.M. Role of clay mineralogy in the stabilization of soil organic carbon in olive groves under contrasted soil management. Minerals 2023, 13, 2075–2163. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Dimande, P.; Pereira, E.L.; Ferreira, I.Q.; Freitas, S.; Correia, C.M.; Moutinho-Pereira, J.; Arrobas, M. Early-maturing annual legumes: An option for cover cropping in rainfed olive orchards. Nutr. Cycl. Agroecosystems 2015, 103, 153–166. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Tatichi, A.; Esposto, S.; Servili, M.; Sifola, M.I.; Pellegrini, S.; Pagliai, M.; et al. Changes of soil properties and tree performances induced by soil management in a high-density olive orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Paut, R.; Dufils, A.; Derbez, F.; Dossin, A.L.; Penvern, S. Orchard Grazing in France: Multiple Forms of Fruit Tree Livestock Integration in Line with Farmers’ Objectives and Constraints. Forests 2021, 12, 1339. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Miyagawa, Y.; Sakai, M. Challenging sheep grazing in orchards: Changes in nutrition, performance, and the health of animals and the effects on the vegetation and soil. Grassl. Sci. 2022, 68, 187–192. [Google Scholar] [CrossRef]
- IPMA (Instituto Português do Mar e da Atmosfera). Normais Climatológicas. Instituto Nacional do Mar e da Atmosfera. 2024. Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 12 January 2024).
- WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; Technical Paper 9; ISRIC; FAO: Rome, Italy, 2002. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Available Micronutrients (Cu, Fe, Mn, Zn) and Heavy Metals (Ni, Pb, Cd); DTPA Extraction Method: Rome, Italy, 2022. [Google Scholar]
- Temminghoff, E.E.; Houba, V.J. Plant Analysis Procedures, 2nd ed.; Temminghoff, E.E., Houba, V.J., Eds.; Kluwer Academic Publishers: London, UK, 2004. [Google Scholar] [CrossRef]
- Irmak, S. Evapotranspiration. In Encyclopaedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 1432–1438. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficients: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Mukiibi, A.; Franke, A.C.; Steyn, J.M. Determination of crop coefficients and evapotranspiration of potato in a semi-arid climate using canopy state variables and satellite-based NDVI. Remote Sens. 2023, 15, 4579. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A. Water scarcity down to earth surface in a Mediterranean climate: The extreme future of soil moisture in Portugal. J. Hydrol. 2022, 615, 128731. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Lampreave, M.; Mateos, M.A. Addressing water stress and climate variability in the mediterranean: Study of regulated deficit irrigation (RDI) and non-irrigation (NI) in tempranillo and cabernet sauvignon (Vitis vinifera L.). Agriculture 2024, 14, 129. [Google Scholar] [CrossRef]
- Jiménez-González, M.A.; López-Romano, H.; Carral, P.; Álvarez-González, A.M.; Herranz-Luque, J.-E.; Sastre-Rodríguez, B.E.; García-Díaz, A.; Muñoz-Organero, G.; Marques, M.J. Ten-Year impact of cover crops on soil organic matter quantity and quality in semi-arid vineyards. Land 2023, 12, 2143. [Google Scholar] [CrossRef]
- Nyabami, P.; Weinrich, E.; Maltais-Landry, G.; Lin, Y. Three years of cover crops management increased soil organicmatter and labile carbon pools in a subtropical vegetable agroecosystem. Agrosystems Geosci. Environ. 2024, 7, e20454. [Google Scholar] [CrossRef]
- de Pedro, L.; Perera-Fernández, L.G.; López-Gallego, E.; Pérez-Marcos, M.; Sanchez, J.A. The effect of cover crops on the biodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agronomy 2020, 10, 580. [Google Scholar] [CrossRef]
- Beaumelle, L.; Auriol, A.; Grasset, M.; Pavy, A.; Thiéry, D.; Rusch, A. Benefits of increased cover crop diversity for predators andbiological pest control depend on the landscape context. Ecol. Solut. Evid. 2021, 2, e12086. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Gordon, E.; Davilla, F.; Riedy, C. 2022. Transforming landscapes and mindscapes through regenerative agriculture. Agric. Hum. Values 2022, 39, 809–826. [Google Scholar] [CrossRef]
- Paolotti, L.; Boggia, A.; Castellini, C.; Rocchi, L.; Rosati, A. Combining livestock and tree crops to improve sustainability in agriculture: A case study using the Life Cycle Assessment approach. J. Clean Prod. 2016, 131, 351–363. [Google Scholar] [CrossRef]
- Trickett, T.; Warner, D.J. Earthworm Abundance Increased by Mob-Grazing Zero-Tilled Arable Land in South-East England. Earth 2022, 3, 895–906. [Google Scholar] [CrossRef]
- Haim, D.; Shalom, L.; Simhon, Y.; Shlizerman, L.; Kamara, I.; Morozov, M.; Albacete, A.; Rivero, R.M.; Sadka, A. Alternate bearing in fruit trees: Fruit presence induces polar auxin transport in citrus and olive stem and represses IAA release from the bud. J. Exp. Bot. 2021, 72, 2450–2462. [Google Scholar] [CrossRef] [PubMed]
- Jangid, R.; Kumar, A.; Masu, M.; Kanade, N.; Pant, R. Alternate bearing in fruit crops: Causes and control measures. Asian J. Agric. Hortic. Res. 2023, 1, 10–19. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Benlloch, M.; Navarro, C.; Martin, G.C. The time of floral induction on olive. J. Amer. Soc. Hort. Sci. 1992, 117, 304–307. [Google Scholar] [CrossRef]
- Lavee, S.; Harshemesh, H.; Avidan, N. Phenolic acids possible involvement in regulating growth and alternate fruiting in olive trees. Acta Hort. 1986, 179, 317–328. [Google Scholar] [CrossRef]
- Rosati, A.; Paoletti, A.; Al Hariri, R.; Famiani, F. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive. Tree Physiol. 2018, 8, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.G.; Oren, R.; Waring, R.H. Fruiting and sink competition. Tree Physiol. 2018, 38, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Rapoport, H.F.; Rallo, L. Relationship among reproductive processes and fruitlet abscission in ‘Arbequina’ olive. Adv. Hort. Sci. 1995, 9, 92–96. [Google Scholar]
- Martin, G.C.; Ferguson, L.; Sibbett, G.S. Flowering, pollination, fruiting, alternate bearing, and abscission. In Olive Production Manual; Sibbett, G.S., Ferguson, L., Eds.; Publication 3353; University of California: Oakland, CA, USA, 2005; pp. 49–54. [Google Scholar]
- Rodrigues, M.A.; Arrobas, M. Analysis of yearly variation on olive yields and its relation to alternate fruiting. In Proceedings of the 6th International Conference on Simulation and Modelling in the Food and Bio-Industry 2010, Bragança, Portugal, 24–26 June 2010; pp. 202–205. [Google Scholar]
- Sibbett, G.S.; Ferguson, L. Nitrogen, boron, and potassium dynamic in “On” vs “Off” cropped Mansanillo olive trees in California. Acta Hort. 2002, 586, 369–373. [Google Scholar] [CrossRef]
- Tomlin, C.D.S. The Pesticide Manual: A World Compendium, 14th ed.; British Crop Protection Council: Hampshire, UK, 2006; pp. 545–548. [Google Scholar]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Limited: Edinburg, UK, 2017. [Google Scholar]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Sonsri, K.; Naruse, H.; Watanabe, A. Mechanisms controlling the stabilization of soil organic matter in agricultural soils as amended with contrasting organic amendments: Insights based on physical fractionation coupled with 13C NMR spectroscopy. Sci. Total Environ. 2022, 825, 153853. [Google Scholar] [CrossRef]
- Fernández-Escobar, R. Fertilization. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2017; pp. 419–460. [Google Scholar]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Moller, I.S.; White, P. Function of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Elsevier: London, UK, 2012; pp. 135–189. [Google Scholar]
- Rodrigues, M.A.; Ferreira, I.Q.; Claro, A.M.; Arrobas, M. Fertilizer recommendations for olive based upon nutrients removed in crop and Pruning. Sci. Hortic. 2012, 142, 205–211. [Google Scholar] [CrossRef]
- Ferreira, I.Q.; Arrobas, M.; Moutinho-Pereira, J.M.; Correia, C.; Rodrigues, M.A. Olive response to potassium applications under different water regimes and cultivars. Nutr. Cycl. Agroecosystems 2018, 112, 387–401. [Google Scholar] [CrossRef]
- Lopes, J.I.; Arrobas, M.; Raimundo, S.; Gonçalves, A.; Brito, C.; Martins, S.; Pinto, L.; Moutinho-Pereira, J.; Correia, C.M.; Rodrigues, M.A. Photosynthesis, yield, nutrient availability and soil properties after biochar, zeolites, or mycorrhizal inoculum application to a mature rainfed olive orchard. Agriculture 2022, 12, 171. [Google Scholar] [CrossRef]
- Lopes, J.I.; Gonçalves, A.; Brito, C.; Martins, S.; Pinto, L.; Moutinho-Pereira, J.; Raimundo, S.; Margarida Arrobas, M.; Rodrigues, M.A.; Correia, C.M. Inorganic Fertilization at High N Rate Increased Olive Yield of a Rainfed Orchard but Reduced Soil Organic Matter in Comparison to Three Organic Amendments. Agronomy 2021, 11, 2172. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 191–248. [Google Scholar]
- Afonso, S.; Pereira, E.; Arrobas, M.; Rodrigues, M.A. Recycling nutrient-rich hop leaves by composting with wheat straw and farmyard manure in suitable mixtures. J. Environ. Manag. 2021, 284, 112105. [Google Scholar] [CrossRef] [PubMed]
- Arrobas, M.; Carvalho, J.T.N.; Raimundo, S.; Poggere, G.; Rodrigues, M.A. The safe use of compost derived from municipal solid waste depends on its composition and conditions of application. Soil Use Manag. 2022, 38, 917–928. [Google Scholar] [CrossRef]
- Dimande, P.; Arrobas, M.; Rodrigues, M.A. Under a tropical climate and in sandy soils, bat guano mineralizes very quickly, behaving more like a mineral fertilizer than a conventional farmyard manure. Agronomy 2023, 13, 1367. [Google Scholar] [CrossRef]
EOC | TOC | TN | Extr. P | Ca++ | Mg++ | K+ | Na+ | EA | CEC | Extr. B | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | pHH2O | mg kg−1 | cmolc kg−1 | mg kg−1 | ||||||||
Sheep grazing | 19.00 a | 41.26 a | 2.21 a | 5.68 a | 179.63 a | 8.64 a | 1.79 a | 0.40 a | 0.15 a | 0.13 a | 11.10 a | 1.65 a |
Tillage | 12.86 b | 33.67 c | 1.74 a | 5.63 a | 112.63 b | 8.72 a | 1.78 a | 0.32 a | 0.16 a | 0.15 a | 11.13 a | 1.02 b |
Herbicide | 15.33 b | 37.30 b | 1.80 a | 5.74 a | 167.24 a | 8.69 a | 2.14 a | 0.37 a | 0.19 a | 0.12 a | 11.50 a | 1.74 a |
Prob. | 0.0014 | <0.0001 | 0.1006 | 0.5298 | 0.0005 | 0.9930 | 0.1657 | 0.6859 | 0.3703 | 0.1851 | 0.8463 | 0.0005 |
DMY | N | P | K | Ca | Mg | B | Fe | Mn | Zn | Cu | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
g pot−1 | g kg−1 | mg kg−1 | ||||||||||
Sheep grazing | 5.6 a | 16.8 a | 5.5 a | 31.0 a | 4.8 a | 3.0 a | 32.8 a | 318.8 a | 195.2 a | 16.1 a | 9.0 a | |
Tillage | 4.5 b | 15.3 b | 4.7 a | 32.4 a | 4.4 a | 2.9 a | 27.9 a | 325.6 a | 245.0 a | 18.9 a | 9.0 a | |
Herbicide | 5.0 ab | 16.9 a | 5.9 a | 32.9 a | 4.5 a | 2.7 a | 37.1 a | 291.0 a | 247.8 a | 21.2 a | 9.8 a | |
Prob. | 0.0239 | 0.0287 | 0.1175 | 0.5215 | 0.1014 | 0.0944 | 0.0088 | 0.2212 | 0.1866 | 0.0523 | 0.2520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimande, P.; Arrobas, M.; Correia, C.M.; Rodrigues, M.Â. Ground Management Through Grazing in Rainfed Olive Orchards Provides High Olive Yields and Has Other Potential Benefits for Both the Soil and the Farmer. Agriculture 2024, 14, 897. https://doi.org/10.3390/agriculture14060897
Dimande P, Arrobas M, Correia CM, Rodrigues MÂ. Ground Management Through Grazing in Rainfed Olive Orchards Provides High Olive Yields and Has Other Potential Benefits for Both the Soil and the Farmer. Agriculture. 2024; 14(6):897. https://doi.org/10.3390/agriculture14060897
Chicago/Turabian StyleDimande, Paulo, Margarida Arrobas, Carlos M. Correia, and Manuel Ângelo Rodrigues. 2024. "Ground Management Through Grazing in Rainfed Olive Orchards Provides High Olive Yields and Has Other Potential Benefits for Both the Soil and the Farmer" Agriculture 14, no. 6: 897. https://doi.org/10.3390/agriculture14060897
APA StyleDimande, P., Arrobas, M., Correia, C. M., & Rodrigues, M. Â. (2024). Ground Management Through Grazing in Rainfed Olive Orchards Provides High Olive Yields and Has Other Potential Benefits for Both the Soil and the Farmer. Agriculture, 14(6), 897. https://doi.org/10.3390/agriculture14060897