Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Collection and Preprocessing of Residue Cover Image Data
2.3. Remote Sensing Image Data Collection and Processing
2.4. Methods
2.4.1. Yen Image Segmentation Algorithm
2.4.2. SPA Feature Selection Method
2.4.3. CatBoost Estimation Model
2.5. Evaluation Metrics
3. Results
3.1. Extraction of Maize Residue Cover
3.2. Extraction of Spectral Feature Indices
3.3. Construction and Evaluation of the MRC Inversion Model
3.4. Spatial Distribution of Maize Residue Cover
4. Discussion
4.1. Analysis of Spectral Index Characteristics for Maize Residue Cover Estimation
4.2. Error Analysis of Image Segmentation Algorithm Results
4.3. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Li, X.; Gregorich, E.; McLaughlin, N.; Zhang, X.; Guo, Y.; Gao, Y.; Liang, A. Tillage and Cropping Effects on Soil Organic Carbon: Biodegradation and Storage in Density and Size Fractions. Eur. J. Soil Sci. 2020, 71, 1188–1199. [Google Scholar] [CrossRef]
- Hao, X.; Han, X.; Wang, C.; Yan, J.; Lu, X.; Chen, X.; Zou, W. Temporal Dynamics of Density Separated Soil Organic Carbon Pools as Revealed by δ13C Changes under 17 Years of Straw Return. Agric. Ecosyst. Environ. 2023, 356, 108656. [Google Scholar] [CrossRef]
- Rusakova, I.V. Change in the Content of Total and Easily Degradable Organic Matter in Soddy–Podzolic Soil Associated with a Long-Term Straw Incorporation. Mosc. Univ. Soil Sci. Bull. 2023, 78, S37–S45. [Google Scholar] [CrossRef]
- Saquee, F.S.; Norman, P.E.; Saffa, M.D.; Kavhiza, N.J.; Pakina, E.; Zargar, M.; Diakite, S.; Stybayev, G.; Baitelenova, A.; Kipshakbayeva, G. Impact of Different Types of Green Manure on Pests and Disease Incidence and Severity as Well as Growth and Yield Parameters of Maize. Heliyon 2023, 9, e17294. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, W.; Du, J.; Song, K.; Xiang, X.; Liu, H.; Zhang, Y.; Zhang, W.; Zheng, Z.; Wang, Y.; et al. Mapping Maize Tillage Practices over the Songnen Plain in Northeast China Using GEE Cloud Platform. Remote Sens. 2023, 15, 1461. [Google Scholar] [CrossRef]
- Dong, Y.; Xuan, F.; Li, Z.; Su, W.; Guo, H.; Huang, X.; Li, X.; Huang, J. Modeling the Corn Residue Coverage after Harvesting and before Sowing in Northeast China by Random Forest and Soil Texture Zoning. Remote Sens. 2023, 15, 2179. [Google Scholar] [CrossRef]
- Jin, X.; Ma, J.; Wen, Z.; Song, K. Estimation of Maize Residue Cover Using Landsat-8 OLI Image Spectral Information and Textural Features. Remote Sens. 2015, 7, 14559–14575. [Google Scholar] [CrossRef]
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Serbin, G.; Dennison, P.; Kokaly, R.F.; Wu, Z.; Masek, J.G. Evaluation of SWIR Crop Residue Bands for the Landsat Next Mission. Remote Sens. 2021, 13, 3718. [Google Scholar] [CrossRef]
- Berger, K.; Hank, T.; Halabuk, A.; Rivera-Caicedo, J.P.; Wocher, M.; Mojses, M.; Gerhátová, K.; Tagliabue, G.; Dolz, M.M.; Venteo, A.B.P.; et al. Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery. Remote Sens. 2021, 13, 4711. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Kurban, A.; Ablekim, A.; Wu, S.; Van De Voorde, T.; Azadi, H.; Maeyer, P.D.; Dufatanye Umwali, E. Estimation of Photosynthetic and Non-Photosynthetic Vegetation Coverage in the Lower Reaches of Tarim River Based on Sentinel-2A Data. Remote Sens. 2021, 13, 1458. [Google Scholar] [CrossRef]
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Shermeyer, J.; McCarty, G.W.; Quemada, M. Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sens. 2018, 10, 1657. [Google Scholar] [CrossRef]
- Quemada, M.; Daughtry, C.S.T. Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions. Remote Sens. 2016, 8, 660. [Google Scholar] [CrossRef]
- Janga, B.; Asamani, G.P.; Sun, Z.; Cristea, N. A Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15, 4112. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Fu, Q.; Kou, R.; Huang, F.; Yang, B.; Yang, T.; Gao, M. Techniques and Challenges of Image Segmentation: A Review. Electronics 2023, 12, 1199. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, D.; Zhang, J.; Li, M.; Sun, H.; Ma, J. Dynamic Influence Elimination and Chlorophyll Content Diagnosis of Maize Using UAV Spectral Imagery. Remote Sens. 2020, 12, 2650. [Google Scholar] [CrossRef]
- Hayat, M.A.; Wu, J.; Cao, Y. Unsupervised Bayesian Learning for Rice Panicle Segmentation with UAV Images. Plant Methods 2020, 16, 18. [Google Scholar] [CrossRef]
- Otsu, N. A Tlreshold Selection Method from Gray-Level Histograms. Automatica 1975, 11, 23–27. [Google Scholar]
- Lavania, S.; Matey, P.S. Novel Method for Weed Classification in Maize Field Using Otsu and PCA Implementation. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 13–14 February 2015; pp. 534–537. [Google Scholar]
- Zhou, J.; Wu, Y.; Chen, J.; Cui, M.; Gao, Y.; Meng, K.; Wu, M.; Guo, X.; Wen, W. Maize Stem Contour Extraction and Diameter Measurement Based on Adaptive Threshold Segmentation in Field Conditions. Agriculture 2023, 13, 678. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuo, R.; Xu, L.; Fang, Y. A Spatial–Temporal Bayesian Deep Image Prior Model for Moderate Resolution Imaging Spectroradiometer Temporal Mixture Analysis. Remote Sens. 2023, 15, 3782. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Esker, P.D.; Specht, J.E.; Conley, S.P. Advancing Agricultural Research Using Machine Learning Algorithms. Sci. Rep. 2021, 11, 17879. [Google Scholar] [CrossRef] [PubMed]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. WIREs Data Min. Knowl. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Ang, K.L.-M.; Seng, J.K.P. Big Data and Machine Learning with Hyperspectral Information in Agriculture. IEEE Access 2021, 9, 36699–36718. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Chen, W.; Lin, B.-S.; Seeboonruang, U. Comparison of Ensemble Machine Learning Methods for Soil Erosion Pin Measurements. IJGI 2021, 10, 42. [Google Scholar] [CrossRef]
- Fu, X.; Zhou, W.; Zhou, X.; Li, F.; Hu, Y. Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations. Forests 2023, 14, 1624. [Google Scholar] [CrossRef]
- Chi, M.; Kun, Q.; Benediktsson, J.A.; Feng, R. Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2009, 6, 762–766. [Google Scholar] [CrossRef]
- Ahn, J.M.; Kim, J.; Kim, K. Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting. Toxins 2023, 15, 608. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. 4-CatBoost for Big Data: An Interdisciplinary Review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, Q.; Chen, Y.; Liu, Y.; Jiang, D.; Zhang, Z. Hyperspectral Estimation of Chlorophyll Content in Apple Tree Leaf Based on Feature Band Selection and the CatBoost Model. Agronomy 2023, 13, 2075. [Google Scholar] [CrossRef]
- Lu, Q.; Si, W.; Wei, L.; Li, Z.; Xia, Z.; Ye, S.; Xia, Y. Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms. Remote Sens. 2021, 13, 3928. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of Feature Selection and CatBoost for Prediction: The First Application to the Estimation of Aboveground Biomass. Forests 2021, 12, 216. [Google Scholar] [CrossRef]
- Sankur, B. Survey over Image Thresholding Techniques and Quantitative Performance Evaluation. J. Electron. Imaging 2004, 13, 146. [Google Scholar] [CrossRef]
- Zhang, J.; Rivard, B.; Rogge, D.M. The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data. Sensors 2008, 8, 1321–1342. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, F.; Chang, Q. Combination of Continuous Wavelet Transform and Successive Projection Algorithm for the Estimation of Winter Wheat Plant Nitrogen Concentration. Remote Sens. 2023, 15, 997. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Jha, S.; Son, L.H.; Kumar, R.; Priyadarshini, I.; Smarandache, F.; Long, H.V. Neutrosophic Image Segmentation with Dice Coefficients. Measurement 2019, 134, 762–772. [Google Scholar] [CrossRef]
- Saha, A.; Grimm, L.J.; Harowicz, M.; Ghate, S.V.; Kim, C.; Walsh, R.; Mazurowski, M.A. Interobserver Variability in Identification of Breast Tumors in MRI and Its Implications for Prognostic Biomarkers and Radiogenomics. Med. Phys. 2016, 43, 4558. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, X.; Ma, X. Improving the Accuracy of Soil Organic Carbon Estimation: CWT-Random Frog-XGBoost as a Prerequisite Technique for In Situ Hyperspectral Analysis. Remote Sens. 2023, 15, 5294. [Google Scholar] [CrossRef]
- Deventer, A.V.; Ward, A.; Gowda, P.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- McNairn, H.; Protz, R. Mapping Corn Residue Cover on Agricultural Fields in Oxford County, Ontario, Using Thematic Mapper. Can. J. Remote Sens. 1993, 19, 152–159. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.; Heilman, P.; Bieden-bender, S.; Moran, S.; Goodrich, D.; Weltz, M. RANGES Improves Satellite-Based Information and Land Cover Assessments in Southwest United States. Eos Trans. Am. Geophys. Union 2002, 83, 601–606. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Yang, F.; Liu, H.; Yang, X.; Fu, C.; He, B. Using C2X to Explore the Uncertainty of In Situ Chlorophyll-a and Improve the Accuracy of Inversion Models. Sustainability 2023, 15, 9516. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Du, J.; Zhao, B.; Hu, Y.; Li, D.; Yu, W. Identification of Smoke from Straw Burning in Remote Sensing Images with the Improved YOLOv5s Algorithm. Atmosphere 2022, 13, 925. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote Estimation of Chlorophyll Content in Higher Plant Leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving Estimation of Summer Maize Nitrogen Status with Red Edge-Based Spectral Vegetation Indices. Field Crops Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R.; McMurtrey, J.E. Assessing Crop Residue Cover Using Shortwave Infrared Reflectance. Remote Sens. Environ. 2004, 90, 126–134. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Wang, Z.; Xie, Q.; Wang, Y.; Liu, L.; Hall, C.C. A Comparison of Estimating Crop Residue Cover from Sentinel-2 Data Using Empirical Regressions and Machine Learning Methods. Remote Sens. 2020, 12, 1470. [Google Scholar] [CrossRef]
- Daughtry, C.S.T. Discriminating Crop Residues from Soil by Shortwave Infrared Reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Doraiswamy, P.C.; Hunt, E.R.; Stern, A.J.; McMurtrey, J.E.; Prueger, J.H. Remote Sensing of Crop Residue Cover and Soil Tillage Intensity. Soil Tillage Res. 2006, 91, 101–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products. Remote Sens. 2020, 12, 4015. [Google Scholar] [CrossRef]
Sentinel-2 MSI Formula | Tillage Index | Abbreviation | Reference |
---|---|---|---|
(B11 − B12)/(B11 + B12) | Normalized Difference Tillage Index | NDTI | [41] |
(B8A − B12)/(B8A + B12) | Normalized Difference Index 7 | NDI7 | [42] |
(B12 − B4)/(B12 + B4) | Shortwave Red Normalized Difference Index | SRNDI | [7] |
B11/B12 | Simple Tillage Index | STI | [41] |
(B11 − B4)/(B11 + B4) | Normalized Difference Senescent Vegetation Index | NDSVI | [43] |
(B1 − B2)/(B1 + B2) | Normalized Difference Chlorophyll Index | NDCI | [44] |
(B6 − B5)/(B6 + B5) | Normalized Red Edge Drought Index 2 | NDRE1 | [45] |
(B11 − B3)/(B11 + B3) | Modified Crop Residue Cover | MCRC | [46] |
(B8A − B11)/(B8A + B11) | Normalized Difference Index 5 | NDI5 | [42] |
B8/B4 | Ratio Vegetation Index | RVI | [47] |
(B8 − B7)/(B8 + B7) | Normalized Difference Vegetation Index Red Edge 3 | NDVIRE3 | [48] |
(B8 − B4)/(B8 + B4) | Normalized Difference Vegetation Index | NDVI | [49] |
(B7 − B5)/(B7 + B5) | Normalized Difference Red Edge 2 | NDRE2 | [45] |
(B8 − B6)/(B8 + B6) | Normalized Difference Vegetation Index Red Edge 2 | NDVIRE2 | [48] |
(B3 − B8)/(B3 + B8) | Normalized Difference Water Index | NDWI | [50] |
Method | CatBoost | RF | MLPR | ||||
---|---|---|---|---|---|---|---|
Max Depth | Estimators | Learning Rate | Max Depth | Estimators | Max Features | Hidden Layer Size | |
SPA | 3 | 12 | 0.03 | 4 | 150 | 0.3 |
Ensemble Learning Model | Training Data Set | Test Data Set | ||||
---|---|---|---|---|---|---|
RMSE (%) | RPD | RMSE (%) | RPD | |||
CBR | 0.83 | 1.31 | 2.17 | 0.81 | 1.42 | 1.95 |
RF | 0.62 | 2.54 | 1.64 | 0.58 | 2.43 | 1.52 |
MLP | 0.55 | 2.27 | 1.32 | 0.51 | 2.98 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, N.; Ma, X.; Jiang, R.; Wu, M.; Zhang, W. Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm. Agriculture 2024, 14, 711. https://doi.org/10.3390/agriculture14050711
Lin N, Ma X, Jiang R, Wu M, Zhang W. Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm. Agriculture. 2024; 14(5):711. https://doi.org/10.3390/agriculture14050711
Chicago/Turabian StyleLin, Nan, Xunhu Ma, Ranzhe Jiang, Menghong Wu, and Wenchun Zhang. 2024. "Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm" Agriculture 14, no. 5: 711. https://doi.org/10.3390/agriculture14050711
APA StyleLin, N., Ma, X., Jiang, R., Wu, M., & Zhang, W. (2024). Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm. Agriculture, 14(5), 711. https://doi.org/10.3390/agriculture14050711